
DL205 User Manual
Volume 2 of 2

D2–USER–M

� i
Vol 2: Table of Contents

Chapter 6: Drum Instruction Programming
(DL250–1 / DL260 CPU only)
Introduction 6–2.

Purpose 6–2.
Drum Terminology 6–2.
Drum Chart Representation 6–3.
Output Sequences 6–3.

Step Transitions 6–4.
Drum Instruction Types 6–4.
Timer-Only Transitions 6–4.
Timer and Event Transitions 6–5.
Event-Only Transitions 6–6.
Counter Assignments 6–6.
Last Step Completion 6–7.

Overview of Drum Operation 6–8.
Drum Instruction Block Diagram 6–8.
Powerup State of Drum Registers 6–9.
Output Mask Operation 6–10.

Drum Control Techniques 6–11.
DrumControl Inputs 6–11.
Self-Resetting Drum 6–12.
Initializing Drum Outputs 6–12.
Cascaded Drums Provide More Than 16 Steps 6–13.

Drum Instructions 6–14.
Timed Drum with Discrete Outputs (DRUM) 6–14.
Event Drum with Discrete Outputs (EDRUM) 6–16.
Masked Event Drum with Discrete Outputs (MDRMD) 6–20.
Masked Event Drum with Word Output (MDRMW) 6–22.

ii
Table of Contents

Chapter 7: RLLPLUS Stage Programming
Introduction to Stage Programming 7–2.

Overcoming “Stage Fright” 7–2.

Learning to Draw State Transition Diagrams 7–3.
Introduction to Process States 7–3.
The Need for State Diagrams 7–3.
A 2–State Process 7–3.
RLL Equivalent 7–4.
Stage Equivalent 7–4.
Let’s Compare 7–5.
Initial Stages 7–5.
What Stage Bits Do 7–6.
Stage Instruction Characteristics 7–6.

Using the Stage Jump Instruction for State Transitions 7–7.
Stage Jump, Set, and Reset Instructions 7–7.

Stage Program Example: Toggle On/Off Lamp Controller 7–8.
A 4–State Process 7–8.

Four Steps to Writing a Stage Program 7–9.

Stage Program Example: A Garage Door Opener 7–10.
Draw the Block Diagram 7–10.
Draw the State Diagram 7–11.
Add Safety Light Feature 7–12.
Modify the Block Diagram and State Diagram 7–12.
Using a Timer Inside a Stage 7–13.
Add Emergency Stop Feature 7–14.
Exclusive Transitions 7–14.

Stage Program Design Considerations 7–15.
Stage Program Organization 7–15.
How Instructions Work Inside Stages 7–16.
Using a Stage as a Supervisory Process 7–17.
Stage Counter 7–17.
Unconditional Outputs 7–18.
Power Flow Transition Technique 7–18.

Parallel Processing Concepts 7–19.
Parallel Processes 7–19.
Converging Processes 7–19.
Convergence Stages (CV) 7–19.
Convergence Jump (CVJMP) 7–20.
Convergence Stage Guidelines 7–20.

Managing Large Programs 7–21.
Stage Blocks (BLK, BEND) 7–21.
Block Call

(BCALL) 7–22.

iii
Table of Contents

RLLPLUS Instructions 7–23.
Stage (SG) 7–23.
Initial Stage (ISG) 7–24.
Jump (JMP) 7–24.
Not Jump (NJMP) 7–24.
Converge Stage (CV) and Converge Jump (CVJMP) 7–25.
Block Call (BCALL) 7–27.
Block (BLK) 7–27.
Block End (BEND) 7–27.
Stage View in DirectSOFT32 7–28.

Questions and Answers about Stage Programming 7–29.

Chapter 8: PID Loop Operation (DL250–1 and DL260 only)
DL250–1/DL260 PID Loop Features 8–2.

Main Features 8–2.
Getting Acquainted with PID Loops 8–4.

Loop Setup Parameters 8–6.
Loop Table and Number of Loops 8–6.
PID Error Flags 8–6.
Establishing the Loop Table Size and Location 8–7.
Loop Table Word Definitions 8–8.
PID Mode Setting 1 Bit Descriptions (Addr + 00) 8–9.
PID Mode Setting 2 Bit Descriptions (Addr + 01) 8–10.
Mode / Alarm Monitoring Word (Addr + 06) 8–11.
Ramp / Soak Table Flags (Addr + 33) 8–11.
Ramp/Soak Table Location (Addr + 34) 8–12.
Ramp/Soak Table Programming Error Flags (Addr + 35) 8–12.
PV Auto Transfer (Addr + 36) from I/O Module Base/Slot/Channel Option 8–13.
PV Auto Transfer (Addr + 36) from V–memory Option 8–13.
Control Output Auto Transfer (Addr + 37) 8–13.

Loop Sample Rate and Scheduling 8–14.
Loop Sample Rates 8–14.
Choosing the Best Sample Rate 8–14.
Programming the Sample Rate 8–15.
PID Loop Effect on CPU Scan Time 8–16.

Ten Steps to Successful Process Control 8–18.
Step 1: Know the Recipe 8–18.
Step 2: Plan Loop Control Strategy 8–18.
Step 3: Size and Scale Loop Components 8–18.
Step 4: Select I/O Modules 8–18.
Step 5: Wiring and Installation 8–19.
Step 6: Loop Parameters 8–19.
Step 7: Check Open Loop Performance 8–19.
Step 8: Loop Tuning 8–19.
Step 9: Run Process Cycle 8–19.
Step 10: Save Loop Parameters 8–19.

iv
Table of Contents

Basic Loop Operation 8–20.
Data Locations 8–20.
Data Sources 8–20.
Auto Transfer to Analog I/O 8–21.
Loop Modes 8–22.
CPU Modes and Loop Modes 8–23.
How to Change Loop Modes 8–24.
Operator Panel Control of PID Modes 8–25.
PLC Modes’ Effect on Loop Modes 8–25.
Loop Mode Override 8–25.
Bumpless Transfers 8–26.

PID Loop Data Configuration 8–27.
Loop Parameter Data Formats 8–27.
Choosing Unipolar or Bipolar Format 8–27.
Handling

Data Offsets 8–28.
Setpoint (SP) Limits 8–28.
Remote Setpoint (SP) Location 8–29.
Process Variable (PV) Configuration 8–29.
Control Output Configuration 8–30.
Error Term Configuration 8–31.

PID Algorithms 8–32.
Position Algorithm 8–32.
Velocity Algorithm 8–33.
Direct-Acting and Reverse-Acting Loops 8–34.
P-I-D Loop Terms 8–35.
Using a Subset of PID Control 8–36.
Derivative Gain Limiting 8–37.
Bias Term 8–37.
Bias Freeze 8–38.

Loop Tuning Procedure 8–39.
Manual Tuning Procedure 8–40.
Tuning Cascaded Loops 8–45.

PV Analog Filter 8–46.
PV Auto Transfer Functions with Filtering Options 8–47.
Creating an Analog Filter in Ladder Logic 8–48.

Feedforward Control 8–49.
Feedforward Example 8–50.

Time-Proportioning Control 8–51.
On/Off Control Program Example 8–52.

Cascade Control 8–53.
Introduction 8–53.
Cascaded Loops in the DL250–1, DL260 CPUs 8–54.

Process Alarms 8–55.
PV Absolute Value Alarms 8–56.
PV Deviation Alarms 8–56.

v
Table of Contents

PV Rate-of-Change Alarm 8–57.
PV Alarm Hysteresis 8–58.
Alarm Programing Error 8–58.

Ramp/Soak Generator 8–59.
Introduction 8–59.
Ramp/Soak Table 8–60.
Ramp / Soak Table Flags 8–62.
Ramp/Soak Generator Enable 8–62.
Ramp/Soak Controls 8–62.
Ramp/Soak Profile Monitoring 8–63.
Ramp/Soak Programming Errors 8–63.
Testing Your Ramp/Soak Profile 8–63.

Troubleshooting Tips 8–64.

Bibliography 8–65.

Glossary of PID Loop Terminology 8–66.

Chapter 9: Maintenance and Troubleshooting
Hardware Maintenance 9–2.

Diagnostics 9–3.

CPU Indicators 9–10.

PWR Indicator 9–11.

RUN Indicator 9–13.

CPU Indicator 9–13.

BATT Indicator 9–13.

Communications Problems 9–13.

I/O Module Troubleshooting 9–14.

Noise Troubleshooting 9–17.

Machine Startup and Program Troubleshooting 9–18.

Appendix A: Auxiliary Functions
Introduction A–2.
What are Auxiliary Functions? A–2.
Accessing AUX Functions via DirectSOFT32 A–3.
Accessing AUX Functions via the Handheld Programmer A–3.

AUX 2* — RLL Operations A–4.
AUX 21, 22, 23 and 24 A–4.
AUX 21 Check Program A–4.
AUX 22 Change Reference A–4.
AUX 23 Clear Ladder Range A–4.
AUX 24 Clear Ladders A–4.

vi
Table of Contents

AUX 3* — V-memory Operations A–4.
AUX 31 Clear V Memory A–4.

AUX 4* — I/O Configuration A–5.
AUX 41 – 46 A–5.
AUX 41 Show I/O Configuration A–5.
AUX 42 I/O Diagnostics A–5.
AUX 44 Power-up Configuration Check A–5.
AUX 45 Select Configuration A–5.
AUX 46 I/O Configuration A–6.

AUX 5* — CPU Configuration A–7.
AUX 51 – 58 A–7.
AUX 51 Modify Program Name A–7.
AUX 52 Display /Change Calendar A–7.
AUX 53 Display Scan Time A–7.
AUX 54 Initialize Scratchpad A–8.
AUX 55 Set Watchdog Timer A–8.
AUX 56 CPU Network Address A–8.
AUX 57 Set Retentive Ranges A–9.
AUX 58 Test Operations A–9.
AUX 59 Bit Override A–10.
AUX 5B Counter Interface Configuration A–10.
AUX 5C Display Error History A–11.

AUX 6* — Handheld Programmer Configuration A–12.
AUX 61, 62 and 65 A–12.
AUX 61 Show Revision Numbers A–12.
AUX 62 Beeper On / Off A–12.
AUX 65 Run Self Diagnostics A–12.

AUX 7* — EEPROM Operations A–13.
AUX 71 – 76 A–13.
Transferrable Memory Areas A–13.
AUX 71 CPU to HPP EEPROM A–13.
AUX 72 HPP EEPROM to CPU A–13.
AUX 73 Compare HPP EEPROM to CPU A–13.
AUX 74 HPP EEPROM Blank Check A–13.
AUX 75 Erase HPP EEPROM A–13.
AUX 76 Show EEPROM Type A–13.

AUX 8* — Password Operations A–14.
AUX 81 – 83 A–14.
AUX 81 Modify Password A–14.
AUX 82 Unlock CPU A–14.
AUX 83 Lock CPU A–14.

Appendix B: DL205 Error Codes

vii
Table of Contents

Appendix C: Instruction Execution Times
Introduction C–2.

V-Memory Data Registers C–2.
V-Memory Bit Registers C–2.
How to Read the Tables C–3.

Boolean Instructions C–4.

Comparative Boolean C–5.

Bit of Word instructions C–14.

Immediate Instructions C–15.

Timer, Counter, Shift Register Instructions C–16.

Accumulator Data Instructions C–17.

Logical Instructions C–19.

Math Instructions C–21.

Differential Instructions C–24.

Bit Instructions C–25.

Number Conversion Instructions C–26.

Table Instructions C–27.

CPU Control Instructions C–29.

Program Control Instructions C–29.

Interrupt Instructions C–30.

Network Instructions C–30.

Intelligent I/O Instructions C–30.

Message Instructions C–31.

RLLPLUS Instructions C–31.

DRUM Instructions C–32.

Clock / Calander Instructions C–32.

MODBUS Instructions C–32.

ASCII Instructions C–33.

Appendix D: Special Relays
DL230 CPU Special Relays D–2.

Startup and Real-Time Relays D–2.
CPU Status Relays D–2.
System Monitoring D–2.
Accumulator Status D–3.
Counter Interface Module Relays D–3.
Equal Relays for Multi-step Presets with Up/Down Counter #1 D–3.

viii
Table of Contents

DL240/DL250–1/DL260 CPU Special Relays D–4.
Startup and Real-Time Relays D–4.
CPU Status Relays D–4.
System Monitoring Relays D–5.
Accumulator Status Relays D–5.
Counter Interface Module Relays D–5.
Communications Monitoring Relays D–6.
Equal Relays for Multi-step Presets with Up/Down Counter #1 D–7.
Equal Relays for Multi-step Presets with Up/Down Counter #2 D–8.

Appendix E: DL205 Product Weight
Product Weight Table E–2.

Appendix F: European Union Directives (CE)
European Union (EU) Directives F–2.

Member Countries F–2.
Special Installation Manual F–3.
Other Sources of Information F–3.

Basic EMC Installation Guidelines F–4.
Enclosures F–4.
Electrostatic Discharge (ESD) F–5.
Suppression and Fusing F–5.
Internal Enclosure Grounding F–6.
Equi–potential Grounding F–6.
Communications and Shielded Cables F–6.
Analog and RS232 Cables F–7.
Multidrop Cables F–7.
Shielded Cables F–7.
within Enclosures F–7.
Network Isolation F–8.
Items Specific to the DL205 F–8.

16
Drum Instruction
Programming
(DL250–1 / DL260 CPU only)

In This Chapter. . . .
— Introduction
— Step Transitions
— Overview of Drum Operation
— Drum Control Techniques
— Drum Instructions

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–2
Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

Introduction

The four drum instructions available in the DL250–1 and DL260 CPUs electronically
simulate an electro-mechanical drum sequencer. The instructions offer slight
variations on the basic principle.
Drum instructions are best suited for repetitive processes consisting of a finite
number of steps. They can do the work of many rungs of ladder logic with simplicity.
Therefore, drums can save programming and debugging time.
We introduce some terminology associated with drum instructions by describing the
original electro-mechanical drum pictured below. The mechanical drum generally
has pegs on its curved surface. The pegs are populated in a particular pattern,
representing a set of desired actions for machine control. A motor or solenoid rotates
the drum a precise amount at specific times. During rotation, stationary wipers sense
the presence of pegs (present = on, absent = off). This interaction makes or breaks
electrical contact with the wipers, creating electrical outputs from the drum. The
outputs are wired to devices on a machine for On/Off control.
Drums usually have a finite number of positions within one rotation, called steps.
Each step represents some process step. At powerup, the drum resets to a
particular step. The drum rotates from one step to the next based on a timer, or on
some external event. During special conditions, a machine operator can manually
increment the drum step using a jog control on the drum’s drive mechanism. The
contact closure of each wiper generates a unique on/off pattern called a sequence,
designed for controlling a specific machine. Because the drum is circular, it
automatically repeats the sequence once per rotation. Applications vary greatly, and
a particular drum may rotate once per second, or as slowly as once per week.

Drum

Outputs

Wipers

Pegs

Electronic drums provide the benefits of mechanical drums and more. For example,
they have a preset feature that is impossible for mechanical drums: The preset
function lets you move from the present step directly to any other step on command!

Purpose

230

�

240

�

250–1

�

260

�

Drum Terminology

D
rum

 Instruction
P

rogram
m

ing
6–3

Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

For editing purposes, the electronic drum is presented in chart form in
DirectSOFT32 and in this manual. Imagine slicing the surface of a hollow drum
cylinder between two rows of pegs, then pressing it flat. Now you can view the drum
as a chart as shown below. Each row represents a step, numbered 1 through 16.
Each column represents an output, numbered 0 through 15 (to match word bit
numbering). The solid circles in the chart represent pegs (On state) in the
mechanical drum, and the open circles are empty peg sites (Off state).

 1
STEP

 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

 1 2 3 4 5 6 7 8 9101112131415 0
OUTPUTS

The mechanical drum sequencer derives its name from sequences of control
changes on its electrical outputs. The following figure shows the sequence of On/Off
controls generated by the drum pattern above. Compare the two, and you will find
they are equivalent! If you can see their equivalence, you are on your way to
understanding drum instruction operation.

0 0
1

1 0
1

2 0
1

3 0
1

4 0
1

5 0
1

6 0
1

7 0
1

8 0
1

9 0
1

10 0
1

11 0
1

12 0
1

13 0
1

14 0
1

15 0
1

Output
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Step

Drum Chart
Representation

Output Sequences

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–4
Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

Step Transitions

There are four types of Drum instructions in the DL250–1 and DL260 CPUs:
� Timed Drum with Discrete Outputs (DRUM)
� Time and Event Drum with Discrete Outputs (EDRUM)
� Masked Event Drum with Discrete Outputs (MDRMD)
� Masked Event Drum with Word Output (MDRMW)

The four drum instructions all include time-based step transitions, and three include
event-based transitions as well. Other options include outputs defined as a single
word or as individual bits, and an output mask (individual output disable/enable).
Each drum has 16 steps, and each step has 16 outputs. Refer to the figure below.
Each output can be either an X, Y, or C coil, offering programming flexibility. We
assign Step 1 an arbitrary unique output pattern (�= Off, �= On) as shown. When
programming a drum instruction, you also determine both the output assignment
and the On/Off state (pattern) at that time. All steps use the same output assignment,
but each step may have its own unique output pattern.
Drums move from step to step based on time and/or an external event (input). All
four drum types offer timer step transitions, and three types also offer events. The
figure below shows how timer-only transitions work.

� � � � � � � � � � � � � � � �Step 1 Outputs:

� � � � � � � � � � � � � � � �Step 2 Outputs:

Has counts per
step expired?

No

Yes

Increment
count timer

Use next transition criteria

The drum stays in each step for a specific duration (user-programmable). The
timebase of the timer is programmable, from 0.01 seconds to 99.99 seconds. This
establishes the resolution, or the duration of each “tick of the clock”. Each step uses
the same timebase, but has its own unique counts per step, which you program. The
drum spends a specific amount of time in each step, given by the formula:

Time in step = 0.01 seconds X Timebase x Counts per step

Drum Instruction
Types

Timer-Only
Transitions

D
rum

 Instruction
P

rogram
m

ing
6–5

Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

For example, if you program a 5 second time base and 12 counts for Step 1, the drum
will spend 60 seconds in Step 1. The maximum time for any step is given by the
formula:

Max Time per step = 0.01 seconds X 9999 X 9999
= 999,800 seconds = 277.7 hours = 11.6 days

NOTE: When first choosing the timebase resolution, a good rule of thumb is to make
it about 1/10 the duration of the shortest step in your drum. You will be able to
optimize the duration of that step in 10% increments. Other steps with longer
durations allow optimizing by even smaller increments (percentage-wise). Also,
note the drum instruction executes once per CPU scan. Therefore, it is pointless to
specify a drum timebase that is much faster than the CPU scan time.

Time and Event Drums move from step to step based on time and/or external events.
The figure below shows how step transitions work for these drums.

Is Step event
true?

� � � � � � � � � � � � � � � �Step 1 Outputs:

� � � � � � � � � � � � � � � �Step 2 Outputs:

No

Yes

Increment
count timer

Has step
counts expired?

No

Yes

Use next transition criteria

When the drum enters Step 1, the output pattern shown is set. It begins polling the
external input programmed for that step. You can define event inputs as X, Y, or C
discrete point types. Suppose we select X0 for the Step 1 event input. If X0 is off, then
the drum remains in Step 1. When X0 is On, the event criteria is met and the timer
increments. The timer increments as long as the event remains true. When the
counts for Step 1 have expired, the drum moves to Step 2. The outputs change
immediately to match the new pattern for Step 2.

Timer and Event
Transitions

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–6
Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

Time and Event drums do not have to possess both the event and the timer criteria
programmed for each step. You have the option of programming one of the two, and
even mixing transition types among all the steps of the drum. For example, you might
want Step 1 to transition on an event, Step 2 to transition on time only, and Step 3 to
transition on both time and an event. Furthermore, you may elect to use only part of
the 16 steps, and only part of the 16 outputs.

Is Step event
true?

� � � � � � � � � � � � � � � �Step 1 Outputs:

� � � � � � � � � � � � � � � �Step 2 Outputs:

No

Yes

Use next transition criteria

Each drum instruction uses the resources of four counters in the CPU. When
programming the drum instruction, you select the first counter number. The drum
also uses the next three counters automatically. The counter bit associated with the
first counter turns on when the drum has completed its cycle, going off when the
drum is reset. These counter values and counter bit precisely indicate the progress
of the drum instruction, and can be monitored by your ladder program.

Suppose you program a timer drum to
have 8 steps, and we select CT10 for the
counter number (remember, counter
numbering is in octal). Counter usage is
shown to the right. The right column holds
typical values, interpreted below.

CT10 Counts in step V1010 1528

CT11 Timer Value V1011 0200

CT12 Preset Step V1012 0001

CT13 Current Step V1013 0004

Counter Assignments

CT10 shows you are at the 1528th count in the current step, which is step 4 (shown in
CT13). If we have programmed step 4 to have 3000 counts, the step is over half
completed. CT11 is the count timer, shown in units of 0.01 seconds. So, each
least-significant-digit change represents 0.01 seconds. The value of 200 means you
have been in the current count (1528) for 2 seconds (0.01 x 100). Finally, CT12 holds
the preset step value which was programmed into the drum instruction. When the
drum’s Reset input is active, it presets to step 1 in this case. The value of CT12 does
not change without a program edit. Counter bit CT10 turns on when the drum cycle is
complete, and turns off when the drum is reset.

Event-Only
Transitions

Counter
Assignments

D
rum

 Instruction
P

rogram
m

ing
6–7

Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

The last step in a drum sequence may be any step number, since partial drums are
valid. Refer to the following figure. When the transition conditions of the last step are
satisfied, the drum sets the counter bit corresponding to the counter named in the
drum instruction box (such as CT0). Then it moves to a final “drum complete” state.
The drum outputs remain in the pattern defined for the last step (including any output
mask logic). Having finished a drum cycle, the Start and Jog inputs have no effect at
this point.
The drum leaves the “drum complete” state when the Reset input becomes active (or
on a program-to-run mode transition). It resets the drum complete bit (such as CT0),
and then goes directly to the appropriate step number defined as the preset step.

Are transition
conditions met?

� � � � � � � � � � � � � � � �Last step Outputs:

� � � � � � � � � � � � � � � �Complete Outputs:

No

Yes

Go to Preset Step

Set
CT0 = 1

Reset Input
Active?

No

Yes

Reset
CT0 = 0

(Timer and/or Event criteria)

Set Drum Complete bit

Reset Drum Complete bit

Last Step
Completion

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–8
Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

Overview of Drum Operation

The drum instruction utilizes various inputs and outputs in addition to the drum
pattern itself. Refer to the figure below.

Reset

Preset Step

Jog *

Timebase

Counts/Step

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Outputs Output
Mask *

Step
Control

Step
Pointer

Drum

DRUM INSTRUCTION
Block Diagram

Inputs Outputs

Final Drum
Outputs

CT0 Counts in step V1000 xxxx

CT1 Timer Value V1001 xxxx

CT2 Preset Step V1002 xxxx

CT3 Current Step V1003 xxxx

Counter #

Output Mask *

Pattern

Counter Assignments

* Asterisked inputs
are applicable only
to particular drum
instructions.

Events *

Realtime
Inputs

 (from ladder)

Programming
Selections

Start

The drum instruction accepts several inputs for step control, the main control of the
drum. The inputs and their functions are:

� Start – The Start input is effective only when Reset is off. When Start is
on, the drum timer runs if it is in a timed transition, and the drum looks
for the input event during event transitions. When Start is off, the drum
freezes in its current state (Reset must remain off), and the drum
outputs maintain their current on/off pattern.

� Jog – The jog input is only effective when Reset is off (Start may be
either on or off). The jog input increments the drum to the next step on
each off-to-on transition. Note that only the basic timer drum does not
have a jog input.

� Reset – The Reset input has priority over the Start input. When Reset is
on, the drum moves to its preset step. When Reset is off, then the Start
input operates normally.

� Preset Step – A step number from 1 to 16 that you define (typically is
step 1). The drum moves to this step whenever Reset is on, and
whenever the CPU first enters run mode.

Drum Instruction
Block Diagram

D
rum

 Instruction
P

rogram
m

ing
6–9

Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

� Counts/Step – The number of timer counts the drum spends in each
step. Each step has its own counts parameter. However, programming
the counts/step is optional on Timer/Event drums.

� Timer Value – the current value of the counts/step timer.
� Counter # – The counter number specifies the first of four consecutive

counters which the drum uses for step control. You can monitor these to
determine the drum’s progress through its control cycle.

� Events – Either an X, Y, C, S, C, CT, or SP type discrete point serves
as step transition inputs. Each step has its own event. However,
programming the event is optional on Timer/Event drums.

WARNING: The outputs of a drum are enabled any time the CPU is in Run Mode.
The Start Input does not have to be on, and the Reset input does not disable the
outputs. Upon entering Run Mode, drum outputs automatically turn on or off
according to the pattern of the preset step. This includes any effect of the output
mask when applicable.

The choice of the starting step on powerup and program-to-run mode transitions are
important to consider for your application. Please refer to the following chart. If the
counter memory is configured as non-retentive, the drum is initialized the same way
on every powerup or program-to-run mode transition. However, if the counter
memory is configured to be retentive, the drum will stay in its previous state.

Counter
Number

Function Initialization on Powerup
Number

Non-Retentive Case Retentive Case

CT(n) Current Step
Count

Initialize = 0 Use Previous (no
change)

CT(n + 1) Counter Timer
Value

Initialize = 0 Use Previous (no
change)

CT(n + 2) Preset Step Initialize = Preset Step # Use Previous (no
change)

CT(n + 3) Current Step # Initialize = Preset Step # Use Previous (no
change)

Applications with relatively fast drum cycle times typically will need to be reset on
powerup, using the non-retentive option. Applications with relatively long drum cycle
times may need to resume at the previous point where operations stopped, using the
retentive case. The default option is the retentive case. This means that if you
initialize scratchpad V-memory, the memory will be retentive.

Powerup State of
Drum Registers

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–10
Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

Sometimes we need more flexibility in controlling outputs than standard drum output
patterns provide. The output mask feature lets you disable drum pattern control of
selected outputs on selected steps, allowing those outputs to be controlled by other
ladder logic. Two of the four drum instructions have the “output mask” feature:

� MDRMD – Masked Event Drum with Discrete Outputs
� MDRMW – Masked Event Drum with Word Output

The output mask is simply a bit-by-bit enable/disable control for the drum writing to
the image register of the sixteen outputs. Refer to the figure below. The image
register contains the official current status of all I/O points. At the end of each PLC
scan, the CPU uses the image register status to write to the actual output points.

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Write

Output
Mask

Drum pattern

Final
Outputs

CPU Image
Register

Ladder Program

Other rungs

Practical applications for drum output masking include:
� Nested Sequence – a particular output can perform a specialized

sequence “inside” a particular step, while the other drum outputs remain
static. Rather than consume additional steps, we mask off the output
and control it elsewhere in ladder logic during the step duration.

� Manual Override – occasionally we need to do manual control of some
output(s) in a particular step. Masking the appropriate drum outputs will
allow manual inputs to take over the control through ladder logic.

Each step has its own mask word! Each bit
of the word masks the corresponding
output point. A 16-register table in
V-memory will contain the mask values as
shown to the right. In the drum instruction,
you specify the starting location of the
table. For example, a table which begins
at V2000 will extend to V2017. Multiple
MDRMD or MDRMW drums must have
separate mask tables.

V-memory

Vxxxx

Vxxxx
+ 17

Mask
Registers
16 locations

Octal
addresses

When a mask bit = 1, the drum controls the output point. when the mask bit =0, the
drum cannot write to the image register, so the output remains in its current state.

Output Mask
Operation

D
rum

 Instruction
P

rogram
m

ing
6–11

Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

Drum Control Techniques

Now we are ready to put together the
concepts on the previous pages and
demonstrate general control of the drum
instruction box. The drawing to the right
shows a simplified generic drum
instruction. Inputs from ladder logic
control the Start, Jog, and Reset Inputs.
The first counter bit of the drum (CT0, for
example) indicates the drum cycle is
done.

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Outputs

Steps

Setup
Info.

X0

X1

Mask

Start

Jog

X2 Reset

The timing diagram below shows an arbitrary timer drum input sequence and how
the drum responds. As the CPU enters run mode it initializes the step number to the
preset step number (typically this is Step 1). When the Start input goes high the drum
begins running, looking for an event and/or running the count timer (depending on
the drum type and setup).
After the drum enters Step 2, Reset turns On while Start is still On. Since Reset has
priority over Start, the drum goes to the preset step (Step 1). Note the drum is held in
the preset step during Reset, and that step does not run (respond to events or run the
timer) until Reset turns off.
After the drum has entered step 3, the Start input goes off momentarily, halting the
drum’s timer until Start turns on again.

Start 0
1

Jog 0
1

Step #

Drum
Complete (CT0) 0

1

Inputs

1 1 2 1 1 2 3 3 4 ... 15 16 16 16 1 1

Drum Status

Start
drum

Reset
drum

Hold
drum

Resume
drum

Drum
Complete

Reset
drum

0
1

Outputs (x 16)

Reset 0
1

When the drum completes the last step (Step 16 in this example), the Drum
Complete bit (CT0) turns on, and the step number remains at 16. When the Reset
input turns on, it turns off the Drum Complete bit (CT0), and forces the drum to enter
the preset step.

NOTE: The timing diagram shows all steps using equal time durations. Step times
can vary greatly, depending on the counts/step programmed.

Drum
Control Inputs

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–12
Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

In the figure below, we focus on how the Jog input works on event drums. To the left
of the diagram, note the off-to-on transitions of the Jog input increments the step.
Start may be either on or off (however, Reset must be off). Two jogs takes the drum to
step three. Next, the Start input turns on, and the drum begins running normally.
During step 6 another Jog input signal occurs. This increments the drum to step 7,
setting the timer to 0. The drum begins running immediately in step 7, because Start
is already on. The drum advances to step 8 normally.
As the drum enters step 14, the Start input turns off. Two more Jog signals moves the
drum to step 16. However, note that a third Jog signal is required to move the drum
through step 16 to “drum complete”. Finally, a Reset input signal arrives which forces
the drum into the preset step and turns off the drum complete bit.

Start 0
1

Reset 0
1

Step #

Drum
Complete (CT0) 0

1

Inputs

1 2 3 3 3 4 5 6,7 8 ... 14 15 16 16 16 1

Drum Status

Jog
drum

Reset
drum

Jog
drum

Drum
Complete

0
1

Outputs (x 16)

Jog 0
1

Jog
drum

Applications often require drums that
automatically start over once they
complete a cycle. This is easily
accomplished, using the drum complete
bit. In the figure to the right, the drum
instruction setup is for CT0, so we logically
OR the drum complete bit (CT0) with the
Reset input. When the last step is done,
the drum turns on CT0 which resets itself
to the preset step, also resetting CT0.
Contact X1 still works as a manual reset.

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Outputs

Steps

Setup
Info.

X0

X1
Mask

Start

Reset

CT0

The outputs of a drum are enabled any time the CPU is in run mode. On
program-to-run mode transitions, the drum goes to the preset step, and the outputs
energize according to the pattern of that step. If your application requires all outputs
to be off at powerup, there are two approaches:

� Make the preset step in the drum a “reset step”, with all outputs off.
� Or, use a drum with an output mask. Initialize the mask to “0000” on the

first scan using contact SP0, and LD K000 and OUT Vxxx instructions,
where Vxxxx is the location of the mask register.

Self-Resetting
Drum

Initializing Drum
Outputs

D
rum

 Instruction
P

rogram
m

ing
6–13

Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

Occasionally the need arises for a drum
with more than 16 steps. The solution is to
use two or more drums that are logically
cascaded. When the first drum finishes,
the second one starts, and so on.
Remember that a drum instruction writes
to the outputs on every scan, even when
its start input is off. So, two drums using
the same output points will be in conflict.
The solution for this is to use separate
control relays contacts (CRs) for each
drum’s outputs, and logically OR them
together to control the final outputs.

Refer to the figure to the right. The two
drums behave as one 32–step drum. The
procedure is:
� Use the drum cycle done bit of the

first drum for the start input of the
next drum (CT0 in the example).

� Use the last drum’s cycle done bit for
the reset input of all drums (CT4 in
the example).

� OR a manual reset contact with the
reset contact above, if needed (is X1
in the example).

� Use the same V-memory address for
the output mask of both drums, if
your drum application requires a
mask.

� Use different control relay (CR)
output coils for each drum, but OR
them together in ladder logic as
shown.

Now, Y0 is the final output from the
combined drums. Note each drum must
have an “idle” step in which its CR outputs
are off, while the other drum(s) operate
(will typically be step 1).

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Outputs

Steps

Setup
Info.

X0

X1
Mask

Start

Reset

CT4

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Outputs

Steps

Setup
Info.

CT0

X1 Mask

Start

Reset

CT4

X0

Drum 1

Drum 2

C0

C20

Y0
OUT

Drum 1 output

Drum 2 output

C0

C37

Y17
OUT

Drum 1 output

Drum 2 output

1st output

16th output

Cascaded Drums
Provide More Than
16 Steps

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–14
Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

Drum Instructions
All of the DL250–1 and DL260 drum instructions may be programmed by using
DirectSOFT32. The EDRUM is the only drum instruction that can be programmed
with a handheld programmer, (firmware version v1.8 or later). This section covers
editting using DirectSOFT32 for all of the drum instructions plus the handheld
mnemonics for the EDRUM instruction.
The Timed Drum with Discrete Outputs is the most basic of the DL250–1 and DL260
drum instructions. It operates according to the principles covered on the previous
pages. Below is the instruction in chart form as displayed by DirectSOFT32.

 1 Kdddd

DRUM CT aaa

Step Preset K bb

0.01 sec/Count K cccc

Step # Counts

 2 Kdddd
 3 Kdddd
 4 Kdddd
 5 Kdddd
 6 Kdddd
 7 Kdddd
 8 Kdddd
 9 Kdddd
10 Kdddd
11 Kdddd
12 Kdddd
13 Kdddd
14 Kdddd
15 Kdddd
16 Kdddd

Start

Reset

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

(Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff)
(Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff)

Discrete Output AssignmentCounter Number Step Preset
Timebase

Control
Inputs

Step Number

Counts per Step

15 0

Output Pattern
�= Off, �= On

The Timed Drum features 16 steps and 16 outputs. Step transitions occur only on a
timed basis, specified in counts per step. Unused steps can be left blank (this is the
default entry). The discrete output points may be individually assigned as X, Y, or C
types, or may be left unused. The output pattern may be edited graphically with
DirectSOFT32.
Whenever the Start input is energized, the drum’s timer is enabled. It stops when the
last step is complete, or when the Reset input is energized. The drum enters the
preset step chosen upon a CPU program-to-run mode transition, and whenever the
Reset input is energized.

Drum Parameters Field Data Types Ranges

Counter Number aaa – 0 – 177 (DL250–1)
0 – 377 (DL260)

Preset Step bb K 1 – 16

Timer base cccc K 0 – 99.99 seconds

Counts per step dddd K 0 – 9999

Discrete Outputs Fffff X, Y, C, GX, GY see page 3–52 or
page 3–53

Timed Drum with
Discrete Outputs
(DRUM)

230

�

240

�

250–1

�

260

�

D
rum

 Instruction
P

rogram
m

ing
6–15

Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

Drum instructions use four counters in the CPU. The ladder program can read the
counter values for the drum’s status. The ladder program may write a new preset
step number to CT(n+2) at any time. However, the other counters are for monitoring
purposes only.

Counter Number Ranges of (n) Function Counter Bit Function

CT(n) 0 – 124 Counts in step CTn = Drum Complete

CT(n+1) 1 – 125 Timer value CT(n+1) = (not used)

CT(n+2) 2 –126 Preset Step CT(n+2) = (not used)

CT(n+3) 3 –127 Current Step CT(n+1) = (not used)

The following ladder program shows the DRUM instruction in a typical ladder
program, as shown by DirectSOFT32. Steps 1 through 10 are used, and twelve of
the sixteen output points are used. The preset step is step 1. The timebase runs at
(K10 x 0.01) = 0.1 second per count . Therefore, the duration of step 1 is (25 x 0.1) =
2.5 seconds. In the last rung, the Drum Complete bit (CT0) turns on output Y0 upon
completion of the last step (step 10). A drum reset also resets CT0.

 1 K0025

DRUM CT 0

Step Preset K 1

0.01sec/Count K 10

Step # Counts

 2 K0020
 3 K1500
 4 K0045
 5 K0180
 6 K0923
 7 K1200
 8 K8643
 9 K1200
10 K4000
11
12
13
14
15
16

Start

Reset

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

() () (C30) (Y20) (C2) (Y6) (Y42) (C10)
() () (C14) (Y10) (C4) (Y5) (Y13) (C7)

DirectSOFT32 Display

X0

X1

Drum CompleteCT0 Y0

OUT

15 0

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–16
Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

The Event Drum with Discrete Outputs has all the features of the Timed Drum, plus
event-based step transitions. It operates according to the general principles of drum
operation covered in the beginning of this section. Below is the instruction in chart
form as displayed by DirectSOFT32.

 1 Kdddd

EDRUM CT aaa

Step Preset K bb

0.01 sec/Count K cccc

 2 Kdddd
 3 Kdddd
 4 Kdddd
 5 Kdddd
 6 Kdddd
 7 Kdddd
 8 Kdddd
 9 Kdddd
10 Kdddd
11 Kdddd
12 Kdddd
13 Kdddd
14 Kdddd
15 Kdddd
16 Kdddd

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

(Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff)
(Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff)

Discrete Output Assignment

Counter Number
Step Preset

Timebase

Control
Inputs

Step Number

Counts per Step

Output Pattern
�= Off, �= On

Start

Reset

Jog

Step # Counts Event

Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee

Event per step

15 0

The Event Drum with Discrete Outputs features 16 steps and 16 outputs. Step
transitions occur on timed and/or event basis. The jog input also advances the step
on each off-to-on transition. Time is specified in counts per step, and events are
specified as discrete contacts. Unused steps and events can be left blank (this is the
default entry). The discrete output points may be individually assigned. The output
pattern may be edited graphically with DirectSOFT32.
Whenever the Start input is energized, the drum’s timer is enabled. As long as the
event is true for the current step, the timer runs during that step. When the step count
equals the counts per step, the drum transitions to the next step. This process stops
when the last step is complete, or when the Reset input is energized. The drum
enters the preset step chosen upon a CPU program-to-run mode transition, and
whenever the Reset input is energized.

Drum Parameters Field Data Types Ranges

Counter Number aaa – 0 – 177 (DL250–1)
0 – 377 (DL260)

Preset Step bb K 1 – 16

Timer base cccc K 0 – 99.99 seconds

Counts per step dddd K 0 – 9999

Event eeee X, Y, C, S, T, ST, GX, GY see page 3–52 or
page 3–53

Discrete Outputs Fffff X, Y, C , GX,GY
page 3–53

Event Drum with
Discrete Outputs
(EDRUM)

230

�

240

�

250–1

�

260

�

D
rum

 Instruction
P

rogram
m

ing
6–17

Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

Drum instructions use four counters in the CPU. The ladder program can read the
counter values for the drum’s status. The ladder program may write a new preset
step number to CT(n+2) at any time. However, the other counters are for monitoring
purposes only.

Counter Number Ranges of (n) Function Counter Bit Function

CT(n) 0 – 124 Counts in step CTn = Drum Complete

CT(n+1) 1 – 125 Timer value CT(n+1) = (not used)

CT(n+2) 2 –126 Preset Step CT(n+2) = (not used)

CT(n+3) 3 –127 Current Step CT(n+1) = (not used)

The following ladder program shows the EDRUM instruction in a typical ladder
program, as shown by DirectSOFT32. Steps 1 through 11 are used, and all sixteen
output points are used. The preset step is step 1. The timebase runs at (K10 x 0.01) =
0.1 second per count. Therefore, the duration of step 1 is (1 x 0.1) = 0.1 second. Note
that step 1 is time-based only (event is left blank). And, the output pattern for step 1
programs all outputs off, which is a typically desirable powerup condition. In the last
rung, the Drum Complete bit (CT4) turns on output Y0 upon completion of the last
step (step 11). A drum reset also resets CT4.

 1 K0001

EDRUM CT 4

Step Preset K 1

0.01 sec/Count K 10

 2 K0020
 3 K0150
 4 K0048
 5 K0180
 6 K0923
 7 K0120
 8 K0864
 9 K1200
10 K0400
11 K0000
12
13
14
15
16

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

(Y1) (Y72) (C30) (Y20) (C2) (Y6) (Y42) (C10)
(C34) (Y32) (C14) (Y10) (C4) (Y5) (Y13) (C7)

Step # Counts Event

Y40
X21
X22
C0
C1
X30
X35
X33
Y17
C20

Start

Jog

DirectSOFT32 Display

X0

X1

Drum CompleteCT4 Y0

OUT

ResetX2

15 0

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–18
Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

The handheld programmer can also enter or edit drum instructions for the EDRUM
only. The diagram below lists the keystrokes for entering the drum example on the
previous page. NOTE: Drum editing requires Handheld Programmer firmware
version 1.8 or later.

Handheld Programmer Keystrokes

Start

(DEF K0001)

Reset

Drum Inst.

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF K0000)

Preset Step

Time Base

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

Outputs

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

Counts/
Step

skip over
unused steps

NOTE: You may use the NXT and PREV keys
to skip past entries for unused outputs or steps.

(Continued on next page)

Jog

STR
$

0
A

STR
$

1
B

STR
$

2
C

SHFT
4

E
3

D
ORN

R
ISG

U
ORST
M

0
A ENT

4
E

6
G

NEXT

NEXT

ENT

ENT

ENT

SHFT
2

C
7

H NEXT

SHFT
2

C
0

A NEXT
1

B

SHFT
MLS

Y
1

B NEXT

SHFT
MLS

Y NEXT
4

E

SHFT
MLS

Y
5

F NEXT

SHFT
MLS

Y
6

G NEXT

SHFT
2

C
4

E NEXT

SHFT
2

C
2

C NEXT

SHFT
MLS

Y NEXT
0

A

SHFT
MLS

Y NEXT
2

C

SHFT
2

C
1

B
4

E NEXT

SHFT
2

C NEXT
3

D
0

A

SHFT
MLS

Y NEXT
6

G

SHFT
MLS

Y NEXT
7

H

SHFT
2

C
3

D
4

E NEXT

SHFT
MLS

Y
1

B NEXT

1

16

1

16

5
F NEXT

2
C

0
A NEXT

1
B

5
F

0
A NEXT

4
E

5
F NEXT

1
B

8
I

0
A NEXT

9
J

2
C

3
D NEXT

1
B

0
A NEXT

2
C

8
I

6
G

4
E NEXT

1
B

2
C

0
A

0
A NEXT

4
E

0
A

0
A NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

Handheld Programmer Keystrokes cont’d

D
rum

 Instruction
P

rogram
m

ing
6–19

Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

Handheld Programmer Keystrokes cont’d

Output
Pattern

unused steps

NOTE: You may use the NXT and PREV keys
to skip past entries for unused outputs or steps.

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

skip over unused event
(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

step 1 pattern = 0000

Last rung

Events

6
G

1

16

NEXT

SHFT
MLS

Y
4

E NEXT

SHFT
SET

X
1

B NEXT

SHFT
SET

X
2

C NEXT

SHFT
2

C
0

A NEXT

SHFT
2

C NEXT
1

B

SHFT
SET

X NEXT
0

A

SHFT
SET

X NEXT
5

F

SHFT
SET

X
3

D NEXT

SHFT
MLS

Y
7

H NEXT

SHFT
2

C
2

C
0

A NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

9
J

8
I

1
B NEXT

2
C

2
C

8
I

9
J

4
E NEXT

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

4
E

4
E

7
H NEXT

5
F

1
B

6
G

9
J NEXT

9
J

3
D

4
E

3
D NEXT

4
E

4
E

8
I

6
G NEXT

9
J

4
E

5
F NEXT

9
J

3
D

8
I SHFT

0
A NEXT

5
F

8
I

6
G

4
E NEXT

8
I

4
E

4
E

7
H NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

1

16

Handheld Programmer Keystrokes cont’d

STR
$

CNT
GY

0
A NEXT

SHFT
MLS

Y
0

A NEXT

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–20
Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

The Masked Event Drum with Discrete Outputs has all the features of the basic
Event Drum plus final output control for each step. It operates according to the
general principles of drum operation covered in the beginning of this section. Below
is the instruction in chart form as displayed by DirectSOFT32.

 1 Kdddd

MDRMD CT aaa

Step Preset K bb

0.01 sec/Count K cccc

 2 Kdddd
 3 Kdddd
 4 Kdddd
 5 Kdddd
 6 Kdddd
 7 Kdddd
 8 Kdddd
 9 Kdddd
10 Kdddd
11 Kdddd
12 Kdddd
13 Kdddd
14 Kdddd
15 Kdddd
16 Kdddd

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

Discrete Output AssignmentCounter Number Step Preset

Timebase

Control
Inputs

Step Number

Counts per Step

Start

Reset

Jog

Step # Counts Event

Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee

Event per step

(Fffff)

15 0Ggggg

(Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff)
(Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff)

Output Mask Word

Output Pattern
�= Off, �= On

The Masked Event Drum with Discrete Outputs features sixteen steps and sixteen
outputs. Drum outputs are logically ANDed bit-by-bit with an output mask word for
each step. The Ggggg field specifies the beginning location of the 16 mask words.
Step transitions occur on timed and/or event basis. The jog input also advances the
step on each off-to-on transition. Time is specified in counts per step, and events are
specified as discrete contacts. Unused steps and events can be left blank (this is the
default entry).
Whenever the Start input is energized, the drum’s timer is enabled. As long as the
event is true for the current step, the timer runs during that step. When the step count
equals the counts per step, the drum transitions to the next step. This process stops
when the last step is complete, or when the Reset input is energized. The drum
enters the preset step chosen upon a CPU program-to-run mode transition, and
whenever the Reset input is energized.

Drum Parameters Field Data Types Ranges

Counter Number aaa – 0 – 177 (DL250–1)
0 – 377 (DL260)

Preset Step bb K 1 – 16

Timer base cccc K 0 – 99.99 seconds

Counts per step dddd K 0 – 9999

Event eeee X, Y, C, S, T, ST, GX, GY see page 3–52 or
page 3–53

Discrete Outputs Fffff X, Y, C, GX, GY
page 3–53

Output Mask Ggggg V

Masked
Event Drum with
Discrete Outputs
(MDRMD)

230

�

240

�

250–1

�

260

�

D
rum

 Instruction
P

rogram
m

ing
6–21

Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

Drum instructions use four counters in the CPU. The ladder program can read the
counter values for the drum’s status. The ladder program may write a new preset
step number to CT(n+2) at any time. However, the other counters are for monitoring
purposes only.

Counter Number Ranges of (n) Function Counter Bit Function

CT(n) 0 – 124 Counts in step CTn = Drum Complete

CT(n+1) 1 – 125 Timer value CT(n+1) = (not used)

CT(n+2) 2 –126 Preset Step CT(n+2) = (not used)

CT(n+3) 3 –127 Current Step CT(n+1) = (not used)

The following ladder program shows the MDRMD instruction in a typical ladder
program, as shown by DirectSOFT32. Steps 1 through 11 are used, and all 16
output points are used. The output mask word is at V2000. The final drum outputs
are shown above the mask word as individual bits. The data bits in V2000 are
logically ANDed with the output pattern of the current step in the drum. If you want all
drum outputs to be off after powerup, write zeros to V2000 on the first scan. Ladder
logic may update the output mask at any time to enable or disable the drum outputs.
The preset step is step 1. The timebase runs at (K10 x 0.01)=0.1 second per count.
Therefore, the duration of step 1 is (5 x 0.1) = 0.5 seconds. Note that step 1 is
time-based only (event is left blank). In the last rung, the Drum Complete bit (CT10)
turns on output Y0 upon completion of the last step (step 10). A drum reset also
resets CT10.

 1 K0005

MDRMD CT 10

Step Preset K 1

0.01 sec/Count K 10

 2 K0020
 3 K0150
 4 K0048
 5 K0180
 6 K0923
 7 K0120
 8 K0864
 9 K0120
10 K4000
11
12
13
14
15
16

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

Step # Counts Event

Y40
X21
X22
C0
C1
X30
X35
X33
Y17
C20

Start

Jog

DirectSOFT32 Display

X0

X1

Drum CompleteCT10 Y0

OUT

ResetX2

(Y1)

15 0V2000

(Y72) (C30) (Y20) (C2) (Y6) (Y42) (C10)
(C34) (Y32) (C14) (Y10) (C4) ((Y5) (Y13) (C7)

LD
Kffff

OUT
V2000

Set Mask RegistersSP0

NOTE: The ladder program must load constants in V2000 through
V2012 to cover all mask registers for the eleven steps used in this drum.

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–22
Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

The Masked Event Drum with Word Output features outputs organized as bits of a
single word, rather than discrete points. It operates according to the general
principles of drum operation covered in the beginning of this section. Below is the
instruction in chart form as displayed by DirectSOFT32.

 1 Kdddd

MDRMW CT aaa

Step Preset K bb

0.01 sec/Count K cccc

 2 Kdddd
 3 Kdddd
 4 Kdddd
 5 Kdddd
 6 Kdddd
 7 Kdddd
 8 Kdddd
 9 Kdddd
10 Kdddd
11 Kdddd
12 Kdddd
13 Kdddd
14 Kdddd
15 Kdddd
16 Kdddd

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

Word Output AssignmentCounter Number Step Preset

Timebase

Control
Inputs

Step Number

Counts per Step

Start

Reset

Jog

Step # Counts Event

Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee

Event per step

15 0Ggggg

Output Mask Word

Output Pattern
�= Off, �= On

15 0Fffff

The Masked Event Drum with Word Output features sixteen steps and sixteen
outputs. Drum outputs are logically ANDed bit-by-bit with an output mask word for
each step. The Ggggg field specifies the beginning location of the 16 mask words,
creating the final output (Fffff field). Step transitions occur on timed and/or event
basis. The jog input also advances the step on each off-to-on transition. Time is
specified in counts per step, and events are specified as discrete contacts. Unused
steps and events can be left blank (this is the default entry).
Whenever the Start input is energized, the drum’s timer is enabled. As long as the
event is true for the current step, the timer runs during that step. When the step count
equals the counts per step, the drum transitions to the next step. This process stops
when the last step is complete, or when the Reset input is energized. The drum
enters the preset step chosen upon a CPU program-to-run mode transition, and
whenever the Reset input is energized.

Drum Parameters Field Data Types Ranges

Counter Number aaa – 0 – 177 (DL250–1)
0 – 377 (DL260)

Preset Step bb K 1 – 16

Timer base cccc K 0 – 99.99 seconds

Counts per step dddd K 0 – 9999

Event eeee X, Y, C, S, T, ST, GX, GY see p. 3–52, 3–53

Word Output Fffff V see p. 3–52, 3–53

Output Mask Ggggg V see p. 3–52, 3–53

Masked
Event Drum with
Word Output
(MDRMW)

230

�

240

�

250–1

�

260

�

D
rum

 Instruction
P

rogram
m

ing
6–23

Drum Instruction Programming

DL205 User Manual, 3rd Ed. 06/02

Drum instructions use four counters in the CPU. The ladder program can read the
counter values for the drum’s status. The ladder program may write a new preset
step number to CT(n+2) at any time. However, the other counters are for monitoring
purposes only.

Counter Number Ranges of (n) Function Counter Bit Function

CT(n) 0 – 124 Counts in step CTn = Drum Complete

CT(n+1) 1 – 125 Timer value CT(n+1) = (not used)

CT(n+2) 2 –126 Preset Step CT(n+2) = (not used)

CT(n+3) 3 –127 Current Step CT(n+1) = (not used)

The following ladder program shows the MDRMD instruction in a typical ladder
program, as shown by DirectSOFT32. Steps 1 through 11 are used, and all sixteen
output points are used. The output mask word is at V2000. The final drum outputs
are shown above the mask word as a word at V2001. The data bits in V2000 are
logically ANDed with the output pattern of the current step in the drum, generating
the contents of V2001. If you want all drum outputs to be off after powerup, write
zeros to V2000 on the first scan. Ladder logic may update the output mask at any
time to enable or disable the drum outputs. The preset step is step 1. The timebase
runs at (K50 x 0.01)=0.5 seconds per count. Therefore, the duration of step 1 is (5 x
0.5) = 2.5 seconds. Note that step 1 is time-based only (event is left blank). In the last
rung, the Drum Complete bit (CT14) turns on output Y0 upon completion of the last
step (step 10). A drum reset also resets CT14.

 1 K0005

MDRMW CT 14

Step Preset K 1

0.01 sec/Count K 50

 2 K0020
 3 K0150
 4 K0048
 5 K0180
 6 K0923
 7 K0120
 8 K0864
 9 K0120
10 K4000
11
12
13
14
15
16

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

Step # Counts Event

Y40
X21
X22
C0
C1
X30
X35
X33
Y17
C20

Start

Jog

DirectSOFT32 Display
X0

X1

Drum CompleteCT14 Y0

OUT

ResetX2 15 0V2000

15 0V2001

LD
Kffff

OUT
V2000

Set Mask RegistersSP0

NOTE: The ladder program must load constants in V2000 through
V2012 to cover all mask registers for the eleven steps used in this drum.

17
RLLPLUS

Stage Programming

In This Chapter. . . .
— Introduction to Stage Programming
— Learning to Draw State Transition Diagrams
— Using the Stage Jump Instruction for State Transitions
— Stage Program Example: Toggle On/Off Lamp Controller
— Four Steps to Writing a Stage Program
— Stage Program Example: A Garage Door Opener
— Stage Program Design Considerations
— Parallel Processing Concepts
— Managing Large Programs
— RLLPLUS Instructions
— Questions and Answers About Stage Programming

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–2

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Introduction to Stage Programming

Stage Programming (available in all DL205 CPUs) provides a way to organize and
program complex applications with relative ease, when compared to purely relay
ladder logic (RLL) solutions. Stage programming does not replace or negate the use
of traditional boolean ladder programming. This is why Stage Programming is also
called RLLPLUS. You will not have to discard any training or experience you already
have. Stage programming simply allows you to divide and organize a RLL program
into groups of ladder instructions called stages. This allows quicker and more
intuitive ladder program development than traditional RLL alone provides.

Many PLC programmers in the industry
have become comfortable using RLL for
every PLC program they write... but often
remain skeptical or even fearful of learning
new techniques such as stage
programming. While RLL is great at
solving boolean logic relationships, it has
disadvantages as well:
� Large programs can become almost

unmanageable, because of a lack of
structure.

� In RLL, latches must be tediously
created from self-latching relays.

� When a process gets stuck, it is
difficult to find the rung where the
error occurred.

� Programs become difficult to modify
later, because they do not intuitively
resemble the application problem
they are solving.

STAGE!

Y2X3

OUT

X0

RST
C0

X4

SET
Y0C1

It’s easy to see that these inefficiencies consume a lot of additional time, and time is
money. Stage programming overcomes these obstacles! We believe a few
moments of studying the stage concept is one of the greatest investments in
programming speed and efficiency a PLC programmer can make!
So, we encourage you to study stage programming and add it to your “toolbox” of
programming techniques. This chapter is designed as a self-paced tutorial on stage
programming. For best results:

� Start at the beginning and do not skip over any sections.
� Study each stage programing concept by working through each

example. The examples build progressively on each other.
� Read the Stage Questions and Answers at the end of the chapter for a

quick review.

230

�

240

�

250–1

�

260

�

Overcoming
“Stage Fright”

R
LL P

LU
S

S
tage P

rogram
m

ing
7–3

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Learning to Draw State Transition Diagrams

Those familiar with ladder program
execution know the CPU must scan the
ladder program repeatedly, over and over.
Its three basic steps are:
1. Read the inputs
2. Execute the ladder program
3. Write the outputs
The benefit is that a change at the inputs
can affect the outputs in a few
milliseconds.

Ladder
Program

Inputs Outputs

1) Read Execute Write

PLC Scan

Execute Write

(etc....)

2) Read

3) Read

Most manufacturing processes consist of a series of activities or conditions , each
lasting for several seconds. minutes, or even hours. We might call these “process
states”, which are either active or inactive at any particular time. A challenge for RLL
programs is that a particular input event may last for a brief instant. We typically
create latching relays in RLL to preserve the input event in order to maintain a
process state for the required duration.
We can organize and divide ladder logic into sections called “stages”, representing
process states. But before we describe stages in detail, we will reveal the secret to
understanding stage programming: state transition diagrams.
Sometimes we need to forget about the scan nature of PLCs, and focus our thinking
toward the states of the process we need to identify. Clear thinking and concise
analysis of an application gives us the best chance at writing efficient, bug-free
programs. State diagrams are tools to help us draw a picture of our process! You will
discover that if we can get the picture right, our program will also be right!

Consider the simple process shown to the
right, which controls an industrial motor.
We will use a green momentary SPST
pushbutton to turn the motor on, and a red
one to turn it off. The machine operator will
press the appropriate pushbutton for a
second or so. The two states of our
process are ON and OFF.
The next step is to draw a state transition
diagram, as shown to the right. It shows
the two states OFF and ON, with two
transition lines in-between. When the
event X0 is true, we transition from OFF to
ON. When X1 is true, we transition from
ON to OFF.

Ladder
Program

Inputs Outputs

On

Off

MotorX0

X1

Y0

OFF ON

X0

X1

Output equation: Y0 = ON

State

Transition condition

If you’re following along, you are very close to grasping the concept and the
problem-solving power of state transition diagrams. The output of our controller is
Y0, which is true any time we are in the ON state. In a boolean sense, Y0=ON state.
Next, we will implement the state diagram first as RLL, then as a stage program. This
will help you see the relationship between the two methods in problem solving.

Introduction to
Process States

The Need for State
Diagrams

A 2–State Process

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–4

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

The state transition diagram to the right is
a picture of the solution we need to create.
The beauty of it is this: it expresses the
problem independently of the
programming language we may use to
realize it. In other words, by drawing the
diagram we have already solved the
control problem!

OFF ON

X0

X1

Output equation: Y0 = ON

First, we will translate the state diagram to traditional RLL. Then we will show how
easy it is to translate the diagram into a stage programming solution.

The RLL solution is shown to the right. It
consists of a self-latching control relay,
C0. When the On momentary pushbutton
(X0) is pressed, output coil C0 turns on
and the C0 contact on the second row
latches itself on. So, X0 sets the latch C0
on, and it remains on after the X0 contact
opens. The motor output Y0 also has
power flow, so the motor is now on.
When the Off pushbutton (X1) is pressed,
it opens the normally-closed X1 contact,
which resets the latch. Motor output Y0
turns off when the latch coil C0 goes off.

X1X0

OUT
C0

OUT
Y0C0

Set Reset Latch

OutputLatch

The stage program solution is shown to
the right. The two inline stage boxes S0
and S1 correspond to the two states OFF
and ON. The ladder rung(s) below each
stage box belong to each respective
stage. This means the PLC only has to
scan those rungs when the corresponding
stage is active!
For now, let’s assume we begin in the OFF
State, so stage S0 is active. When the On
pushbutton (X0) is pressed, a stage
transition occurs. The JMP S1 instruction
executes, which simply turns off the Stage
bit S0 and turns on Stage bit S1. So on the
next PLC scan, the CPU will not execute
Stage S0, but will execute stage S1!
In the On State (Stage S1), we want the
motor to always be on. The special relay
contact SP1 is defined as always on, so Y0
turns the motor on.

S1X0

JMP

SG
S0

S0X1

JMP

SG
S1

OUT
Y0

OFF State

ON State

Output

Transition

Transition

SP1 Always on

When the Off pushbutton (X1) is pressed, a transition back to the Off State occurs.
The JMP S0 instruction executes, which simply turns off the Stage bit S1 and turns
on Stage bit S0. On the next PLC scan, the CPU will not execute Stage S1, so the
motor output Y0 will turn off. The Off state (Stage 0) will be ready for the next cycle.

RLL Equivalent

Stage Equivalent

R
LL P

LU
S

S
tage P

rogram
m

ing
7–5

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Right now, you may be thinking “I don’t see the big advantage to Stage
Programming... in fact, the stage program is longer than the plain RLL program”.
Well, now is the time to exercise a bit of faith. As control problems grow in complexity,
stage programming quickly out-performs RLL in simplicity, program size, etc.
For example, consider the diagram below.
Notice how easy it is to correlate the OFF
and ON states of the state transition
diagram below to the stage program at the
right. Now, we challenge anyone to easily
identify the same states in the RLL
program on the previous page!

S1X0

JMP

SG
S0

S0X1

JMP

SG
S1

OUT
Y0

OFF State

ON State

SP1

OFF ON

X0

X1

At powerup and Program-to-Run Mode
transitions, the PLC always begins with all
normal stages (SG) off. So, the stage
programs shown so far have actually had
no way to get started (because rungs are
not scanned unless their stage is active).
Assume that we want to always begin in
the Off state (motor off), which is how the
RLL program works. The Initial Stage
(ISG) is defined to be active at powerup. In
the modified program to the right, we have
changed stage S0 to the ISG type. This
ensures the PLC will scan contact X0 after
powerup, because Stage S0 is active.
After powerup, an Initial Stage (ISG)
works like any other stage!
We can change both programs so the
motor is ON at powerup. In the RLL below,
we must add a first scan relay SP0,
latching C0 on. In the stage example to the
right, we simply make Stage S1 an initial
stage (ISG) instead of S0.

S1X0

JMP

ISG
S0

S0X1

JMP

SG
S1

OUT
Y0

Initial Stage

SP1

S1X0

JMP

SG
S0

S0X1

JMP

ISG
S1

OUT
Y0

Initial Stage

SP1

X1X0

OUT
C0

OUT
Y0C0

First Scan
SP0

Powerup in OFF State

Powerup in ON State

Powerup in ON State

Let’s Compare

Initial Stages

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–6

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

We can mark our desired powerup state
as shown to the right, which helps us
remember to use the appropriate Initial
Stages when creating a stage program. It
is permissible to have as many initial
stages as the process requires.

OFF ON

X0

X1

Powerup

You may recall that a stage is a section of ladder program which is either active or
inactive at a given moment. All stage bits (S0 – Sxxx) reside in the PLCs image
register as individual status bits. Each stage bit is either a boolean 0 or 1 at any time.
Program execution always reads ladder rungs from top to bottom, and from left to
right. The drawing below shows the effect of stage bit status. The ladder rungs below
the stage instruction continuing until the next stage instruction or the end of program
belong to stage 0. Its equivalent operation is shown on the right. When S0 is true, the
two rungs have power flow.

� If Stage bit S0 = 0, its ladder rungs are not scanned (executed).
� If Stage bit S0 = 1, its ladder rungs are scanned (executed).

SG
S0

Actual Program Appearance Functionally Equivalent Ladder

S0

(includes all rungs in stage)

The inline stage boxes on the left power
rail divide the ladder program rungs into
stages. Some stage rules are:
� Execution – Only logic in active

stages are executed on any scan.
� Transitions – Stage transition

instructions take effect on the next
occurrence of the stages involved.

� Octal numbering – Stages are
numbered in octal, like I/O points,
etc. So “S8” is not valid.

� Total Stages – The maximum
number of stages is CPU-dependent.

� No duplicates – Each stage number
is unique and can be used once.

� Any order – You can skip numbers
and sequence the stage numbers in
any order.

� Last Stage – the last stage in the
ladder program includes all rungs
from its stage box until the end coil.

SG
S0

SG
S1

SG
S2

END

What Stage Bits Do

Stage Instruction
Characteristics

R
LL P

LU
S

S
tage P

rogram
m

ing
7–7

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Using the Stage Jump Instruction for State Transitions

The Stage JMP instruction we have used deactivates the stage in which the
instruction occurs, while activating the stage in the JMP instruction. Refer to the
state transition shown below. When contact X0 energizes, the state transition from
S0 to S1 occurs. The two stage examples shown below are equivalent. So, the
Stage Jump instruction is equal to a Stage Reset of the current stage, plus a Stage
Set instruction for the stage to which we want to transition.

S1X0

JMP

SG
S0

Equivalent S0X0

RST

SG
S0

S1

SET

S0 S1

X0

Please Read Carefully – The jump instruction is easily misunderstood. The “jump”
does not occur immediately like a GOTO or GOSUB program control instruction
when executed. Here’s how it works:

� The jump instruction resets the stage bit of the stage in which it occurs.
All rungs in the stage still finish executing during the current scan, even
if there are other rungs in the stage below the jump instruction!

� The reset will be in effect on the following scan, so the stage that
executed the jump instruction previously will be inactive and bypassed.

� The stage bit of the stage named in the Jump instruction will be set
immediately, so the stage will be executed on its next occurrence. In the
left program shown below, stage S1 executes during the same scan as
the JMP S1 occurs in S0. In the example on the right, Stage S1
executes on the next scan after the JMP S1 executes, because stage
S1 is located above stage S0.

S1X0

JMP

SG
S0

Y0S1

OUT

SG
S1

S1X0

JMP

SG
S0

Y0S1

OUT

SG
S1

Executes on same
scan as Jmp

Executes on next
scan after Jmp

Note: Assume we start with Stage 0 active and stage 1 inactive for both examples.

Stage Jump, Set,
and Reset
Instructions

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–8

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Stage Program Example: Toggle On/Off Lamp Controller

In the process shown to the right, we use
an ordinary momentary pushbutton to
control a light bulb. The ladder program
will latch the switch input, so that we will
push and release to turn on the light, push
and release again to turn it off (sometimes
called toggle function). Sure, we could buy
a mechanical switch with the alternate
on/off action built in... However, this
example is educational and also fun!
Next we draw the state transition diagram.
A typical first approach is to use X0 for
both transitions (like the example shown
to the right). However, this is incorrect
(please keep reading).

Ladder
Program

Inputs Outputs

Toggle
X0 Y0

OFF ON

X0

X0

Output equation: Y0 = ON

Powerup

Note that this example differs from the motor example, because now we have only
one pushbutton. When we press the pushbutton, both transition conditions are met.
We would transition around the state diagram at top speed. If implemented in Stage,
this solution would flash the light on or off each scan (obviously undesirable)!
The solution is to make the the push and the release of the pushbutton separate
events. Refer to the new state transition diagram below. At powerup we enter the
OFF state. When switch X0 is pressed, we enter the Press-ON state. When it is
released, we enter the ON state. Note that X0 with the bar above it denotes X0 NOT.

When in the ON state, another push and
release cycle similarly takes us back to the
OFF state. Now we have two unique states
(OFF and ON) used when the pushbutton is
released, which is what was required to solve
the control problem.
The equivalent stage program is shown to the
right. The desired powerup state is OFF, so
we make S0 an initial stage (ISG). In the ON
state, we add special relay contact SP1,
which is always on.
Note that even as our programs grow more
complex, it is still easy to correlate the state
transition diagram with the stage program!

S1X0

JMP

ISG
S0

S2

JMP

SG
S1

OUT
Y0

OFF State

SP1

S3X0

JMP

SG
S2

SG
S3

X0

S0

JMP

X0

Push–On State

ON State

Push–Off State

X0 Push–ON

ON

Push–OFF

OFF

Powerup X0

X0X0

Output equation: Y0 = ON

Output

A 4–State Process

R
LL P

LU
S

S
tage P

rogram
m

ing
7–9

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Four Steps to Writing a Stage Program

By now, you’ve probably noticed that we follow the same steps to solve each
example problem. The steps will probably come to you automatically if you work
through all the examples in this chapter. It’s helpful to have a checklist to guide us
through the problem solving. The following steps summarize the stage program
design procedure:

1. Write a Word Description of the application.

Describe all functions of the process in your own words. Start by listing what
happens first, then next, etc. If you find there are too many things happening at once,
try dividing the problem into more than one process. Remember, you can still have
the processes communicate with each other to coordinate their overall activity.

2. Draw the Block Diagram.

Inputs represent all the information the process needs for decisions, and outputs
connect to all devices controlled by the process.

� Make lists of inputs and outputs for the process.
� Assign I/O point numbers (X and Y) to physical inputs and outputs.

3. Draw the State Transition Diagram.

The state transition diagram describes the central function of the block diagram,
reading inputs and generating outputs.

� Identify and name the states of the process.
� Identify the event(s) required for each transition between states.
� Ensure the process has a way to re-start itself, or is cyclical.
� Choose the powerup state for your process.
� Write the output equations.

4. Write the Stage Program.

Translate the state transition diagram into a stage program.
� Make each state a stage. Remember to number stages in octal. Up to

384 total stages are available in the DL230and DL240 CPU. Up to 1024
total stages are available in the DL250–1 and DL260 CPUs.

� Put transition logic inside the stage which originates each transition (the
stage each arrow points away from).

� Use an initial stage (ISG) for any states that must be active at powerup.
� Place the outputs or actions in the appropriate stages.

You will notice that Steps 1 through 3 prepare us to write the stage program in Step 4.
However, the program virtually writes itself because of the preparation beforehand.
Soon you will be able to start with a word description of an application and create a
stage program in one easy session!

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–10

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Stage Program Example: A Garage Door Opener

In this next stage programming example
we will create a garage door opener
controller. Hopefully most readers are
familiar with this application, and we can
have fun besides!
The first step we must take is to describe
how the door opener works. We will start
by achieving the basic operation, waiting
to add extra features later (stage
programs are very easy to modify).
Our garage door controller has a motor
which raises or lowers the door on
command. The garage owner pushes and
releases a momentary pushbutton once to
raise the door. After the door is up, another
push-release cycle will lower the door.

In order to identify the inputs and outputs
of the system, it’s sometimes helpful to
sketch its main components, as shown in
the door side view to the right. The door
has an up limit and a down limit switch.
Each limit switch closes only when the
door has reached the end of travel in the
corresponding direction. In the middle of
travel, neither limit switch is closed.
The motor has two command inputs: raise
and lower. When neither input is active,
the motor is stopped.
The door command is a simple
pushbutton. Whether wall-mounted as
shown, or a radio-remote control, all door
control commands logically OR together
as one pair of switch contacts.

Down limit switch

Up limit switch

Motor Raise
Lower

Door
Command

The block diagram of the controller is
shown to the right. Input X0 is from the
pushbutton door control. Input X1
energizes when the door reaches the full
up position. Input X2 energizes when the
door reaches the full down position. When
the door is positioned between fully up or
down, both limit switches are open.
The controller has two outputs to drive the
motor. Y1 is the up (raise the door)
command, and Y2 is the down (lower the
door) command.

Ladder
Program

Inputs Outputs

Toggle
X0

Y1

To motor:

Raise

Y2 Lower

Up limit
X1

Down limit
X2

Garage Door
Opener Example

Draw the Block
Diagram

R
LL P

LU
S

S
tage P

rogram
m

ing
7–11

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Now we are ready to draw the state transition diagram. Like the previous light bulb
controller example, this application also has only one switch for the command input.
Refer to the figure below.

� When the door is down (DOWN state), nothing happens until X0
energizes. Its push and release brings us to the RAISE state, where
output Y1 turns on and causes the motor to raise the door.

� We transition to the UP state when the up limit switch (X1) energizes,
and turns off the motor.

� Then nothing happens until another X0 press-release cycle occurs. That
takes us to the LOWER state, turning on output Y2 to command the
motor to lower the door. We transition back to the DOWN state when the
down limit switch (X2) energizes.

The equivalent stage program is shown to the
right. For now, we will assume the door is
down at powerup, so the desired powerup
state is DOWN. We make S0 an initial stage
(ISG). Stage S0 remains active until the door
control pushbutton activates. Then we
transition (JMP) to Push-UP stage, S1.
A push-release cycle of the pushbutton takes
us through stage S1 to the RAISE stage, S2.
We use the always-on contact SP1 to
energize the motor’s raise command, Y1.
When the door reaches the fully-raised
position, the up limit switch X1 activates. This
takes us to the UP Stage S3, where we wait
until another door control command occurs.
In the UP Stage S3, a push-release cycle of
the pushbutton will take us to the LOWER
Stage S5, where we activate Y2 to command
the motor to lower the door. This continues
until the door reaches the down limit switch,
X2. When X2 closes, we transition from Stage
S5 to the DOWN stage S0, where we began.
NOTE: The only special thing about an initial
stage (ISG) is that it is automatically active at
powerup. Afterwards, it is like any other.

S1X0

JMP

ISG
S0

S2

JMP

SG
S1

OUT
Y1

DOWN State

SP1

S3X1

JMP

SG
S2

SG
S3

X0

S4

JMP

X0

Push–UP State

RAISE State

UP State

X0 Push–UP

UP

Push–DOWN

DOWN

X0LOWER

RAISE
X0

X1

X0
X2

Output equations: Y2 = LOWERY1 = RAISE

S5

JMP

SG
S4

X0

Push–DOWN State

OUT
Y2SP1

S0X2

JMP

SG
S5 LOWER State

Powerup

Draw the State
Diagram

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–12

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Next we will add a safety light feature to
the door opener system. It’s best to get the
main function working first as we have
done, then adding the secondary features.
The safety light is standard on many
commercially-available garage door
openers. It is shown to the right, mounted
on the motor housing. The light turns on
upon any door activity, remaining on for
approximately 3 minutes afterwards.
This part of the exercise will demonstrate
the use of parallel states in our state
diagram. Instead of using the JMP
instruction, we will use the set and reset
commands.

Safety light

To control the light bulb, we add an output
to our controller block diagram, shown to
the right, Y3 is the light control output.
In the diagram below, we add an additional
state called “LIGHT”. Whenever the
garage owner presses the door control
switch and releases, the RAISE or
LOWER state is active and the LIGHT
state is simultaneously active. The line to
the Light state is dashed, because it is not
the primary path.

Ladder
Program

Inputs Outputs

Toggle
X0 Y1

Raise

Y2 Lower

Up limit
X1

Down limit
X2 Y3 Light

We can think of the Light state as a parallel process to the raise and lower state. The
paths to the Light state are not a transition (Stage JMP), but a State Set command. In
the logic of the Light stage, we will place a three-minute timer. When it expires, timer
bit T0 turns on and resets the Light stage. The path out of the Light stage goes
nowhere, indicating the Light stage becomes inactive, and the light goes out!

X0 Push–UP

UP

Push–DOWN

DOWN

X0LOWER

RAISE
X0

X1

X0

X2

Output equations:
Y2 = LOWER
Y1 = RAISE

LIGHT

Y3 = LIGHT

X0

X0

T0

Add Safety
Light Feature

Modify the
Block Diagram and
State Diagram

R
LL P

LU
S

S
tage P

rogram
m

ing
7–13

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

The finished modified program is shown to
the right. The shaded areas indicate the
program additions.
In the Push-UP stage S1, we add the Set
Stage Bit S6 instruction. When contact X0
opens, we transition from S1 and go to two
new active states: S2 and S6. In the
Push-DOWN state S4, we make the same
additions. So, any time someone presses
the door control pushbutton, the light turns
on.
Most new stage programmers would be
concerned about where to place the Light
Stage in the ladder, and how to number it.
The good news is that it doesn’t matter!
� Choose an unused Stage number,

and use it for the new stage and as
the reference from other stages.

� Placement in the program is not
critical, so we place it at the end.

You might think that each stage has to be
directly under the stage that transitions to
it. While it is good practice, it is not
required (that’s good, because our two
locations for the Set S6 instruction make
that impossible). Stage numbers and how
they are used determines the transition
paths.
In stage S6, we turn on the safety light by
energizing Y3. Special relay contact SP1
is always on. Timer T0 times at 0.1 second
per count. To achieve 3 minutes time
period, we calculate:

The timer has power flow whenever stage
S6 is active. The corresponding timer bit
T0 is set when the timer expires. So three
minutes later, T0=1 and the instruction
Reset S6 causes the stage to be inactive.
While Stage S6 is active and the light is on,
stage transitions in the primary path
continue normally and independently of
Stage 6. That is, the door can go up, down,
or whatever, but the light will be on for
precisely 3 minutes.

S1X0

JMP

ISG
S0

S2

JMP

SG
S1

OUT
Y1

DOWN State

SP1

S3X1

JMP

SG
S2

SG
S3

X0

S4

JMP

X0

Push–UP State

RAISE State

UP State

S5

JMP

SG
S4

X0

Push–DOWN State

OUT
Y2SP1

S0X2

JMP

SG
S5 LOWER State

OUT
Y3SP1

S6T0

RST

SG
S6 LIGHT State

TMR
K1800

T0

S6

SET

S6

SET

3 min. x 60 sec/min
0.1 sec/count

K= 1800 counts

K=

Using a Timer
Inside a Stage

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–14

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Some garage door openers today will
detect an object under the door. This halts
further lowering of the door. Usually
implemented with a photocell
(“electric-eye”), a door in the process of
being lowered will halt and begin raising.
We will define our safety feature to work in
this way, adding the input from the
photocell to the block diagram as shown to
the right. X3 will be on if an object is in the
path of the door.
Next, we make a simple addition to the
state transition diagram, shown in shaded
areas in the figure below. Note the new
transition path at the top of the LOWER
state. If we are lowering the door and
detect an obstruction (X3), we then jump
to the Push-UP State. We do this instead
of jumping directly to the RAISE state, to
give the Lower output Y2 one scan to turn
off, before the Raise output Y1 energizes.

Ladder
Program

Inputs Outputs
Toggle

X0 Y1
Raise

Y2
Lower

Up limit
X1

Down limit
X2 Y3 Light

Obstruction
X3

X0 Push–UP

UP

Push–DOWN

DOWN

X0LOWER

RAISE
X0

X1

X0

X2 and

LIGHT

X0

X0

T0X3

X3

It is theoretically possible the down limit (X2) and the obstruction input (X3) could
energize at the same moment. In that case, we would “jump” to the Push-UP and
DOWN states simultaneously, which does not make sense.
Instead, we give priority to the obstruction
by changing the transition condition to the
DOWN state to [X2 AND NOT X3]. This
ensures the obstruction event has the
priority. The modifications we must make
to the LOWER Stage (S5) logic are shown
to the right. The first rung remains
unchanged. The second and third rungs
implement the transitions we need. Note
the opposite relay contact usage for X3,
which ensures the stage will execute only
one of the JMP instructions.

OUT
Y2SP1

S0X2

JMP

SG
S5 LOWER State

X3

S1X3

JMP

to Push-UP

to DOWN

Add Emergency
Stop Feature

Exclusive
Transitions

R
LL P

LU
S

S
tage P

rogram
m

ing
7–15

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Stage Program Design Considerations

The examples so far in this chapter used one self-contained state diagram to
represent the main process. However, we can have multiple processes
implemented in stages, all in the same ladder program. New stage programmers
sometimes try to turn a stage on and off each scan, based on the false assumption
that only one stage can be on at a time. For ladder rungs that you want to execute
each scan, put them in a stage that is always on.
The following figure shows a typical application. During operation, the primary
manufacturing activity Main Process, Powerup Initialization, E-Stop and Alarm
Monitoring, and Operator Interface are all running. At powerup, four initial stages
shown begin operation.

Agitate

Monitor

Idle Fill Rinse Spin

E-Stop and Alarm Monitoring

Main Process

Operator Interface

Control Recipe

Status

XXX = ISG

Powerup

Powerup Initialization

In a typical application, the separate stage sequences above operate as follows:
� Powerup Initialization – This stage contains ladder rung tasks

performed once at powerup. Its last rung resets the stage, so this stage
is only active for one scan (or only as many scans that are required).

� Main Process – This stage sequence controls the heart of the process
or machine. One pass through the sequence represents one part cycle
of the machine, or one batch in the process.

� E-Stop and Alarm Monitoring – This stage is always active because it
is watching for errors that could indicate an alarm condition or require an
emergency stop. It is common for this stage to reset stages in the main
process or elsewhere, in order to initialize them after an error condition.

� Operator Interface – This is another task that must always be active
and ready to respond to an operator. It allows an operator interface to
change modes, etc. independently of the current main process step.

Although we have separate processes,
there can be coordination among them.
For example, in an error condition, the
Status Stage may want to automatically
switch the operator interface to the status
mode to show error information as shown
to the right. The monitor stage could set
the stage bit for Status and Reset the
stages Control and Recipe.

Monitor

E-Stop and
Alarm Monitoring

Operator Interface

Control Recipe

Status
Set

Stage Program
Organization

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–16

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

We can think of states or stages as simply dividing up our ladder program as
depicted in the figure below. Each stage contains only the ladder rungs which are
needed for the corresponding state of the process. The logic for transitioning out of a
stage is contained within that stage. It’s easy to choose which ladder rungs are active
at powerup by using an “initial” stage type (ISG).

Stage 0 Stage 1

Stage 2

Most instructions work like they do in standard RLL. You can think of a stage like a
miniature RLL program which is either active or inactive.
Output Coils – As expected, output coils in active stages will turn on or off outputs
according to power flow into the coil. However, note the following:

� Outputs work as usual, provided each output reference (such as “Y3”) is
used in only one stage.

� Output coils automatically turn off when leaving a stage. However, Set
and Reset instructions are not “undone” when leaving a stage.

� An output can be referenced from more than one stage, as long as only
one of the stages is active at a time.

� If an output coil is controlled by more than one stage simultaneously, the
active stage nearest the bottom of the program determines the final
output status during each scan. So, use the OROUT instruction instead
when you want multiple stages to have a logical OR control of an output.

One-Shot or PD coils – Use care if you must use a Positive Differential coil in a
stage. Remember the input to the coil must make a 0–1 transition. If the coil is
already energized on the first scan when the stage becomes active, the PD coil will
not work. This is because the 0–1 transition did not occur.
PD coil alternative: If there is a task which you want to do only once (on 1 scan), it can
be placed in a stage which transitions to the next stage on the same scan.
Counter – When using a counter inside a stage, the stage must be active for one
scan before the input to the counter makes a 0–1 transition. Otherwise, there is no
real transition and the counter will not count. The ordinary Counter instruction does
have a restriction inside stages: it may not be reset from other stages using the RST
instruction for the counter bit. However, the special Stage Counter provides a
solution (see next paragraph).
Stage Counter – The Stage Counter has the benefit that its count may be globally
reset from other stages by using the RST instruction. It has a count input, but no reset
input. This is the only difference from a standard counter instruction.
Drum – Realize the drum sequencer is its own process, and is a different
programming method than stage programming. If you need to use a drum and
stages, be sure to place the drum instruction in an ISG stage that is always active.

How Instructions
Work Inside Stages

R
LL P

LU
S

S
tage P

rogram
m

ing
7–17

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

You may recall the light bulb on-off
controller example from earlier in this
chapter. For the purpose of illustration,
suppose we want to monitor the
“productivity” of the lamp process, by
counting the number of on-off cycles
which occurs. This application will require
the addition of a simple counter, but the
key decision is in where to put the counter.

Ladder
Program

Toggle
X0 Y0

New stage programming students will
typically try to place the counter inside one the
the stages of the process they are trying to
monitor. The problem with this approach is
that the stage is active only part of the time. In
order for the counter to count, the count input
must transition from off to on at least one scan
after its stage activates. Ensuring this
requires extra logic that can be tricky.
In this case, we only need to add another
supervisory stage as shown above, to “watch”
the main process. The counter inside the
supervisor stage uses the stage bit S1 of the
main process as its count input. Stage bits
used as a contact let us monitor a process!
Note that both the Supervisor stage and the
OFF stage are initial stages. The supervisor
stage remains active indefinitely.

S1X0

JMP

ISG
S0

S2

JMP

SG
S1

OUT
Y0

OFF State

SP1

S3X0

JMP

SG
S2

SG
S3

X0

S0

JMP

X0

Push–On State

ON State

Push–Off State

X0 Push–ON

ON

Push–OFF

OFF

Powerup X0

X0X0

Supervisor

Powerup

SGCNT

K5000

CT0

ISG
S4

S1

Main Process

Supervisor Process

Supervisor State

The counter in the above example is a special Stage Counter. Note that it does not
have a reset input. The count is reset by executing a Reset instruction, naming the
counter bit (CT0 in this case). The Stage Counter has the benefit that its count may
be globally reset from other stages. The standard Counter instruction does not have
this global reset capability. You may still use a regular Counter instruction inside a
stage... however, the reset input to the counter is the only way to reset it.

Using a Stage as a
Supervisory
Process

Stage Counter

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–18

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

As in most example programs in this
chapter and Stage 0 to the right, your
application may require a particular output
to be ON unconditionally when a particular
stage is active. Until now, the examples
always use the SP1 special relay contact
(always on) in series with the output coils.
It’s possible to omit the contact, as long as
you place any unconditional outputs first
(at the top) of a stage section of ladder.
The first rung of Stage 1 does this.

WARNING: Unconditional outputs placed
elsewhere in a stage do not necessarily
remain on when the stage is active. In
Stage 2 to the right, Y0 is shown as an
unconditional output, but its powerflow
comes from the rung above. So, Y0 status
will be the same as Y1 (is not correct).

OUT
Y0SP1

SG
S0

OUT
Y0

SG
S1

OUT
Y1X0

OUT
Y0

SG
S2

OUT
Y1X0

Unconditional
Output

Our discussion of state transitions has shown how the Stage JMP instruction makes
the current stage inactive and the next stage (named in the JMP) active. As an
alternative way to enter this in DirectSOFT32, you may use the power flow method
for stage transitions. The main requirement is the current stage be located directly
above the next (jump-to) stage in the ladder program. This arrangement is shown in
the diagram below, by stages S0 and S1, respectively.

S1X0

JMP

SG
S0

Equivalent
X0

SG
S0

S0 S1X0

SG
S1

SG
S1

All other rungs in stage...

Power flow
transition

Recall the Stage JMP instruction may occur anywhere in the current stage, and the
result is the same. However, power flow transitions (shown above) must occur as the
last rung in a stage. All other rungs in the stage will precede it. The power flow
transition method is also achievable on the handheld programmer, by simply
following the transition condition with the Stage instruction for the next stage.
The power flow transition method does eliminate one Stage JMP instruction, its only
advantage. However, it is not as easy to make program changes as using the Stage
JMP. Therefore, we advise using Stage JMP transitions for most programs.

Unconditional
Outputs

Power Flow
Transition
Technique

R
LL P

LU
S

S
tage P

rogram
m

ing
7–19

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Parallel Processing Concepts

Previously in this chapter we discussed how a state may transition to either one state
or another, called an exclusive transition. In other cases, we may need to branch
simultaneously to two or more parallel processes, as shown below. It is acceptable
to use all JMP instructions as shown, or we could use one JMP and a Set Stage bit
instruction(s) (at least one must be a JMP, in order to leave S1). Remember that all
instructions in a stage execute, even when it transitions (the JMP is not a GOTO).

S1S0

S2

S4

S3

S5

S2

JMP

SG
S1

X0

Push–On State

S4

JMP

X0

Process A

Process B

Note that if we want Stages S2 and S4 to energize exactly on the same scan, both
stages must be located below or above Stage S1 in the ladder program (see the
explanation at the bottom of page 7–7). Overall, parallel branching is easy!
Now we consider the opposite case of parallel branching, which is converging
processes. This simply means we stop doing multiple things and continue doing one
thing at a time. In the figure below, processes A and B converge when stages S2 and
S4 transition to S5 at some point in time. So, S2 and S4 are Convergence Stages.

S5

S1

S3

S2

S4

S6= Convergence Stage

Process A

Process B

While the converging principle is simple enough, it brings a new complication. As
parallel processing completes, the multiple processes almost never finish at the
same time. In other words, how can we know whether Stage S2 or S4 will finish last?
This is an important point, because we have to decide how to transition to Stage S5.

The solution is to coordinate the transition
condition out of convergence stages. We
accomplish this with a stage type
designed for this purpose: the
Convergence Stage (type CV). In the
example to the right, convergence stages
S2 and S4 are required to be grouped
together as shown. No logic is permitted
between CV stages! The transition
condition (X3 in this case) must be located
in the last convergence stage. The
transition condition only has power flow
when all convergence stages in the group
are active.

CVJMP
S5X3

CV
S2

CV
S4

Convergence
Stages

SG
S5

Parallel Processes

Converging
Processes

Convergence
Stages
(CV)

230

�

240

�

250–1

�

260

�

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–20

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Recall the last convergence stage only
has power flow when all CV stages in the
group are active. To complement the
convergence stage, we need a new jump
instruction. The Convergence Jump
(CVJMP) shown to the right will transition
to Stage S5 when X3 is active (as one
might expect), but it also automatically
resets all convergence stages in the
group. This makes the CVJMP jump a
very powerful instruction. Note that this
instruction may only be used with
convergence stages.

CVJMP
S5X3

CV
S2

CV
S4

Convergence
Jump

SG
S5

The following summarizes the requirements in the use of convergence stages,
including some tips for their effective application:

� A convergence stage is to be used as the last stage of a process which
is running in parallel to another process or processes. A transition to the
convergence stage means that a particular process is through, and
represents a waiting point until all other parallel processes also finish.

� The maximum number of convergence stages which make up one
group is 17. In other words, a maximum of 17 stages can converge into
one stage.

� Convergence stages of the same group must be placed together in the
program, connected on the power rail without any other logic in
between.

� Within a convergence group, the stages may occur in any order, top to
bottom. It does not matter which stage is last in the group, because all
convergence stages have to be active before the last stage has power
flow.

� The last convergence stage of a group may have ladder logic within the
stage. However, this logic will not execute until all convergence stages
of the group are active.

� The convergence jump (CVJMP) is the intended method to be used to
transition from the convergence group of stages to the next stage. The
CVJMP resets all convergence stages of the group, and energizes the
stage named in the jump.

� The CVJMP instruction must only be used in a convergence stage, as it
is invalid in regular or initial stages.

� Convergence Stages or CVJMP instructions may not be used in
subroutines or interrupt routines.

Convergence Jump
(CVJMP)

�

230

�

240

�

250–1

�

260

�

Convergence
Stage Guidelines

R
LL P

LU
S

S
tage P

rogram
m

ing
7–21

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Managing Large Programs

A stage may contain a lot of ladder rungs, or only one or two program rungs. For most
applications, good program design will ensure the average number of rungs per
stage will be small. However, large application programs will still create a large
number of stages. We introduce a new construct which will help us organize related
stages into groups called blocks. So, program organization is the main benefit of the
use of stage blocks.
A block is a section of ladder program which contains stages. In the figure below,
each block has its own reference number. Like stages, a stage block may be active
or inactive. Stages inside a block are not limited in how they may transition from one
to another. Note the use of stage blocks does not require each stage in a program to
reside inside a block, shown below by the “stages outside blocks”.

Block 0 Block 1 Block 2

Stages outside blocks:

A program with 20 or more stages may be considered large enough to use block
grouping (however, their use is not mandatory). When used, the number of stage
blocks should probably be two or higher, because the use of one block provides a
negligible advantage.
A block of stages is separated from other
ladder logic with special beginning and
ending instructions. In the figure to the
right, the BLK instruction at the top marks
the start of the stage block. At the bottom,
the Block End (BEND) marks the end of
the block. The stages in between these
boundary markers (S0 and S1 in this case)
and their associated rungs make up the
block.
Note the block instruction has a reference
value field (set to “C0” in the example).
The block instruction borrows or uses a
control relay contact number, so that other
parts of the program can control the block.
Any control relay number (such as C0)
used in a BLK instruction is not available
for use as a control relay.

BEND

BLK
C0 Block Instruction

SG
S0

All other rungs in stage...

SG
S1

All other rungs in stage...

Block End
Instruction

Note the stages within a block must be regular stages (SG) or convergence stages
(CV). So, they cannot be initial stages. The numbering of stages inside stage blocks
can be in any order, and is completely independent from the numbering of the
blocks.

Stage Blocks
(BLK, BEND)

230

�

240

�

250–1

�

260

�

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–22

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

The purpose of the Block Call instruction is to activate a stage block. At powerup or
upon Program-to-Run mode transitions, all stage blocks and the stages within them
are inactive. Shown in the figure below, the Block Call instruction is a type of output
coil. When the X0 contact is closed, the BCALL will cause the stage block referenced
in the instruction (C0) to become active. When the BCALL is turned off, the
corresponding stage block and the stages within it become inactive.
We must avoid confusing block call operation with how a “subroutine call” works.
After a BCALL coil executes, program execution continues with the next program
rung. Whenever program execution arrives at the ladder location of the stage block
named in the BCALL, then logic within the block executes because the block is now
active. Similarly, do not classify the BCALL as type of state transition (is not a JMP).

Block C0

Activate
BCALL

C0X0

(next rung)

When a stage block becomes active, the first stage in the block automatically
becomes active on the same scan. The “first” stage in a block is the one located
immediately under the block (BLK) instruction in the ladder program. So, that stage
plays a similar role to the initial type stage we discussed earlier.
The Block Call instruction may be used in several contexts. Obviously, the first
execution of a BCALL must occur outside a stage block, since stage blocks are
initially inactive. Still, the BCALL may occur on an ordinary ladder rung, or it may
occur within an active stage as shown below. Note that either turning off the BCALL
or turning off the stage containing the BCALL will deactivate the corresponding
stage block. You may also control a stage block with a BCALL in another stage block.

BEND

BLK
C0

Stage Block

SG
S10

All rungs in stage...

SG
S11

All other rungs in stage...

BCALL
C0X0

SG
S0

All other rungs in stage...

SG
S11

NOTE: Stage Block may come before or
after the location of the BCALL instruction
in the program.

The BCALL may be used in many ways or contexts, so it can be difficult to find the
best usage. Remember the purpose of stage blocks is to help you organize the
application problem by grouping related stages together. Remember that initial
stages must exist outside stage blocks.

Block Call
(BCALL)

230

�

240

�

250–1

�

260

�

R
LL P

LU
S

S
tage P

rogram
m

ing
7–23

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

RLLPLUS Instructions

aaaS
SG

The Stage instructions are used to create
structured RLLPLUS programs. Stages are
program segments which can be activated
by transitional logic, a jump or a set stage
that is executed from an active stage.
Stages are deactivated one scan after
transitional logic, a jump, or a reset stage
instruction is executed.

Operand Data Type DL230 Range DL240 Range DL250–1 Range DL260 Range

aaa aaa aaa aaa

Stage S 0–377 0–777 0–1777 0–1777

The following example is a simple RLLPLUS program. This program utilizes the initial
stage, stage, and jump instruction to create a structured program.

X0

ISG S0

Y10

OUT

X1 S2

SET

SG S1

X5

X2 Y11

OUT

SG S2

X6 Y12

OUT

X7 S0

JMP

S1

JMP

S1

DirectSOFT Display Handheld Programmer Keystrokes

ISG S(SG) 0

STR X(IN) 0

OUT Y(OUT) 1

STR X(IN) 1

SET S(SG) 2

0

STR X(IN) 5

JMP S(SG) 1

SG S(SG) 1

STR X(IN) 2

OUT Y(OUT) 1 1

SG S(SG) 2

STR X(IN) 6

OUT Y(OUT) 1 2

STR X(IN) 7

AND S(SG) 1

JMP S(SG) 0

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

Stage
(SG)

230

�

240

�

250–1

�

260

�

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–24

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

aaaS
ISG

The Initial Stage instruction is normally used
as the first segment of an RLLPLUS program.
Initial stages will be active when the CPU
enters the run mode allowing for a starting
point in the program. Initial Stages are also
activated by transitional logic, a jump or a
set stage executed from an active stage.
Initial Stages are deactivated one scan after
transitional logic, a jump, or a reset stage
instruction is executed. Multiple Initial
Stages are allowed in a program.

Operand Data Type DL230 Range DL240 Range DL250–1 Range DL260 Range

aaa aaa aaa aaa

Stage S 0–377 0–777 0–1777 0–1777

aaaS

The Jump instruction allows the program to
transition from an active stage which
contains the jump instruction to another
which stage is specified in the instruction.
The jump will occur when the input logic is
true. The active stage that contains the
Jump will be deactivated 1 scan after the
Jump instruction is executed.

JMP

Operand Data Type DL230 Range DL240 Range DL250–1 Range DL260 Range

aaa aaa aaa aaa

Stage S 0–377 0–777 0–1777 0–1777

aaaS

The Not Jump instruction allows the
program to transition from an active stage
which contains the jump instruction to
another which is specified in the instruction.
The jump will occur when the input logic is
off. The active stage that contains the Not
Jump will be deactivated 1 scan after the
Not Jump instruction is executed.

NJMP

Operand Data Type DL230 Range DL240 Range DL250–1 Range DL260 Range

aaa aaa aaa aaa

Stage S 0–377 0–777 0–1777 0–1777

Initial Stage
(ISG)

230

�

240

�

250–1

�

260

�

Jump
(JMP)

230

�

240

�

250–1

�

260

�

Not Jump
(NJMP)

230

�

240

�

250–1

�

260

�

R
LL P

LU
S

S
tage P

rogram
m

ing
7–25

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

In the following example, when the CPU begins program execution only ISG 0 will be
active. When X1 is on, the program execution will jump from Initial Stage 0 to Stage 1. In
Stage 1, if X2 is on, output Y5 will be turned on. If X7 is on, program execution will jump
from Stage 1 to Stage 2. If X7 is off, program execution will jump from Stage 1 to Stage 3.

DirectSOFT32 Display Handheld Programmer Keystrokes

ISG S0

X1 S1

JMP

SG S1

X2 Y5

OUT

X7 S2

JMP

S3

NJMP

ISG S(SG) 0

STR X(IN) 1

JMP S(SG) 1

SG S(SG) 1

STR X(IN) 2

OUT Y(OUT) 5

STR X(IN) 7

JMP S(SG) 2

JMP

S(SG) 3

NSHFT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

S aaa
CV

The Converge Stage instruction is used to
group certain stages together by defining
them as Converge Stages.
When all of the Converge Stages within a
group become active, the CVJMP
instruction (and any additional logic in the
final CV stage) will be executed. All
preceding CV stages must be active before
the final CV stage logic can be executed. All
Converge Stages are deactivated one scan
after the CVJMP instruction is executed.
Additional logic instructions are only
allowed following the last Converge Stage
instruction and before the CVJMP
instruction. Multiple CVJUMP instructions
are allowed.
Converge Stages must be programmed in
the main body of the application program.
This means they cannot be programmed in
Subroutines or Interrupt Routines.

S aaa

CVJMP

Operand Data Type DL240 Range DL250–1 Range DL260 Range

aaa aaa aaa

Stage S 0–777 0–1777 0–1777

Converge Stage
(CV) and Converge
Jump (CVJMP)

230

�

240

�

250–1

�

260

�

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–26

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

In the following example, when Converge Stages S10 and S11 are both active the
CVJMP instruction will be executed when X4 is on. The CVJMP will deactivate S10
and S11, and activate S20. Then, if X5 is on, the program execution will jump back to
the initial stage, S0.

JMP 1

DirectSOFT Display

ISG S0

CV S11

X3 Y3

OUT

X4 S20

CVJMP

SG S20

X0 Y0

OUT

X1 S1

JMP

S10

JMP

SG S1

X2 S11

JMP

Handheld Programmer Keystrokes

ISG S(SG) 0

STR

OUT 0

STR 1

CV S10

X5 S0

JMP

X(IN) 0

Y(OUT)

X(IN)

SHFT C V SHFT JMP S(SG) 2 0

S(SG)

JMP 1S(SG) 0

S(SG) 1

JMP 1

STR 2X(IN)

S(SG) 1

SG

SHFT C V S(SG) 1 0

SHFT C V S(SG) 1 1

STR 3X(IN)

OUT 3Y(OUT)

STR 4X(IN)

S(SG) 2SG 0

JMP 0

STR 5X(IN)

S(SG)

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

R
LL P

LU
S

S
tage P

rogram
m

ing
7–27

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

The stage block instructions are used to activate a block of stages. The Block Call,
Block, and Block End instructions must be used together.

The BCALL instruction is used to activate
a stage block. There are several things
you need to know about the BCALL
instruction.
Uses CR Numbers — The BCALL appears
as an output coil, but does not actually
refer to a Stage number as you might think.
Instead, the block is identified with a
Control Relay (Caaa). This control relay
cannot be used as an output anywhere
else in the program.

C aaa

BCALL

Must Remain Active — The BCALL instruction actually controls all the stages
between the BLK and the BEND instructions even after the stages inside the block
have started executing. The BCALL must remain active or all the stages in the block
will automatically be turned off. If either the BCALL instruction, or the stage that
contains the BCALL instruction goes off, then the stages in the defined block will be
turned off automatically.
Activates First Block Stage — When the BCALL is executed it automatically
activates the first stage following the BLK instructions.

Operand Data Type DL240 Range DL250–1 Range DL260 Range

aaa aaa aaa

Control Relay C 0–777 0–1777 0–3777

The Block instruction is a label which
marks the beginning of a block of stages
that can be activated as a group. A Stage
instruction must immediately follow the
Start Block instruction. Initial Stage
instructions are not allowed in a block.
The control relay (Caaa) specified in
Block instruction must not be used as an
output any where else in the program.

C aaa
BLK

Operand Data Type DL240 Range DL250–1 Range DL260 Range

aaa aaa aaa

Control Relay C 0–777 0–1777 0–3777

The Block End instruction is a label used
with the Block instruction. It marks the
end of a block of stages. There is no
operand with this instruction. Only one
Block End is allowed per Block Call.

BEND

Block Call
(BCALL)

230

�

240

�

250–1

�

260

�

Block (BLK)

230

�

240

�

250–1

�

260

�

Block End (BEND)

230

�

240

�

250–1

�

260

�

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–28

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

DirectSOFT Display

SG
S1

BLK
C0

X3 Y6

OUT

X7 S1

RST

SG
S15

X2 Y5

OUT

X6 C0

BCALL

SG
S10

BEND

In this example, the Block Call is executed
when stage 1 is active and X6 is on. The
Block Call then automatically activates
stage S10, which immediately follows the
Block instruction.
This allows the stages between S10 and
the Block End instruction to operate as
programmed. If the BCALL instruction is
turned off, or if the stage containing the
BCALL instruction is turned off, then all
stages between the BLK and BEND
instructions are automatically turned off.
If you examine S15, you will notice that
X7 could reset Stage S1, which would
disable the BCALL, thus resetting all
stages within the block.

1

Handheld Programmer Keystrokes

SG S(SG)

STR X(IN) 2

OUT Y(OUT) 5

STR X(IN) 6

STR X(IN) 3

SHFT B C A L L C(CR)

SHFT B L K

SG S(SG) 1 0

0

C(CR) 0

OUT Y(OUT) 6

SHFT

RST

STR X(IN) 7

B E N D

S(SG) 1

SG 1S(SG) 5

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

The Stage View option in DirectSOFT32 will let you view the ladder program as a
flow chart. The figure below shows the symbol convention used in the diagrams. You
may find the stage view useful as a tool to verify that your stage program has
faithfully reproduced the logic of the state transition diagram you intend to realize.

SG Stage Reference to
a Stage

J Jump S Set Stage

R Reset Stage

Transition
Logic

Output

The following diagram is a typical stage view of a ladder program containing stages.
Note the left-to-right direction of the flow chart.

ISG
S0

SG
S1

SG
S2

SG
S3

SG
S4

SG
S5

J J

J

S

J

Stage View in
DirectSOFT32

R
LL P

LU
S

S
tage P

rogram
m

ing
7–29

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Questions and Answers about Stage Programming

We include the following commonly-asked questions about Stage Programming as
an aid to new students. All question topics are covered in more detail in this chapter.

Q. What does stage programming do that I cannot do with regular RLL programs?
A. Stages allow you to identify all the states of your process before you begin
programming. This approach is more organized, because you divide up a ladder
program into sections. As stages, these program sections are active only when they
are actually needed by the process. Most processes can be organized into a
sequence of stages, connected by event-based transitions.

Q. Isn’t a stage really like a software subroutine?
A. No, it is very different. A subroutine is called by a main program when needed, and
executes only once before returning to the point from which it was called. A stage,
however, is part of the main program. It represents a state of the process, so an
active stage executes on every scan of the CPU until it becomes inactive.

Q. What are Stage Bits?
A. A stage bit is a single bit in the CPU’s image register, representing the
active/inactive status of the stage in real time. For example, the bit for Stage 0 is
referenced as “S0”. If S0 = 0, then the ladder rungs in Stage 0 are bypassed (not
executed) on each CPU scan. If S0 = 1, then the ladder rungs in Stage 0 are
executed on each CPU scan. Stage bits, when used as contacts, allow one part of
your program to monitor another part by detecting stage active/inactive status.

Q. How does a stage become active?
A. There are three ways:

� If the Stage is an initial stage (ISG), it is automatically active at powerup.
� Another stage can execute a Stage JMP instruction naming this stage,

which makes it active upon its next occurrence in the program.
� A program rung can execute a Set Stage Bit instruction (such as SET

S0).

Q. How does a stage become inactive?
A. There are three ways:

� Standard Stages (SG) are automatically inactive at powerup.
� A stage can execute a Stage JMP instruction, resetting its Stage Bit to

0.
� Any rung in the program can execute a Reset Stage Bit instruction (such

as RST S0).

Q. What about the power flow technique of stage transitions?
A. The power flow method of connecting adjacent stages (directly above or below in
the program) actually is the same as the Stage Jump instruction executed in the
stage above, naming the stage below. Power flow transitions are more difficult to edit
in DirectSOFT32, we list them separately from two preceding questions.

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–30

RLLPLUS Stage Programming

DL205 User Manual, 3rd Ed. 06/02

Q. Can I have a stage which is active for only one scan?
A. Yes, but this is not the intended use for a stage. Instead, make a ladder rung active
for 1 scan by including a stage Jump instruction at the bottom of the rung. Then the
ladder will execute on the last scan before its stage jumps to a new one.

Q. Isn’t a Stage JMP like a regular GOTO instruction used in software?
A. No, it is very different. A GOTO instruction sends the program execution
immediately to the code location named by the GOTO. A Stage JMP simply resets
the Stage Bit of the current stage, while setting the Stage Bit of the stage named in
the JMP instruction. Stage bits are 0 or 1, determining the inactive/active status of
the corresponding stages. A stage JMP has the following results:

� When the JMP is executed, the remainder of the current stage’s rungs
are executed, even if they reside past(under) the JMP instruction. On
the following scan, that stage is not executed, because it is inactive.

� The Stage named in the Stage JMP instruction will be executed upon its
next occurrence. If located past (under) the current stage, it will be
executed on the same scan. If located before (above) the current stage,
it will be executed on the following scan.

Q. How can I know when to use stage JMP, versus a Set Stage Bit or Reset Stage Bit?
A. These instructions are used according to the state diagram topology you have
derived:

� Use a Stage JMP instruction for a state transition... moving from one
state to another.

� Use a Set Stage Bit instruction when the current state is spawning a
new parallel state or stage sequence, or when a supervisory state is
starting a state sequence under its command.

� Use a Reset Stage Bit instruction when the current state is the last state
in a sequence and its task is complete, or when a supervisory state is
ending a state sequence under its command.

Q. What is an initial stage, and when do I use it?
A. An initial stage (ISG) is automatically active at powerup. Afterwards, it works like
any other stage. You can have multiple initial stages, if required. Use an initial stage
for ladder that must always be active, or as a starting point.

Q. Can I place program ladder rungs outside of the stages, so they are always on?
A. It is possible, but it’s not good software design practice. Place ladder that must
always be active in an initial stage, and do not reset that stage or use a Stage JMP
instruction inside it. It can start other stage sequences at the proper time by setting
the appropriate Stage Bit(s).

Q. Can I have more than one active stage at a time?
A. Yes, and this is a normal occurrence for many programs. However, it is important
to organize your application into separate processes, each made up of stages. And a
good process design will be mostly sequential, with only one stage on at a time.
However, all the processes in the program may be active simultaneously.

18
PID Loop Operation
(DL250–1 and DL260 only)

In This Chapter. . . .
— DL250–1 / DL260 PID Loop Features
— Loop Setup Parameters
— Loop Sample Rate and Scheduling
— Ten Steps to Successful Process Control
— Basic Loop Operation
— PID Loop Data Configuration
— PID Algorithms
— Loop Tuning Procedure
— PV Analog Filter
— Feedforward Control
— Time Proportioning Control
— Cascade Control
— Process Alarms
— Ramp/Soak Generator
— Troubleshooting Tips
— Bibliography
— Glossary of PID Loop Terminology

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–2
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

DL250–1 and DL260 PID Loop Features
The DL250–1 and DL260 CPUs process loop control offers a sophisticated set of
features to address many application needs. The main features are:

� DL260 – up to 16 loops, individual programmable sample rates
� DL250–1 – up to 4 loops, individual programmable sample rates
� Manual/ Automatic/Cascaded loop capability available
� Two types of bumpless transfer available
� Full-featured alarms
� Ramp/soak generator with up to 16 segments
� Auto Tuning

The DL250–1 and DL260 CPUs have process control loop capability in addition to
ladder program execution. You can select and configure up to four loops. All sensor
and actuator wiring connects to standard DL205 I/O modules, as shown below. All
process variables, gain values, alarm levels, etc., associated with each loop reside
in a Loop Variable Table in the CPU. The CPU reads process variable (PV) inputs
during each scan. Then it makes PID loop calculations during a dedicated time slice
on each PLC scan, updating the control output value. The control loops use the
Proportional-Integral-Derivative (PID) algorithm to generate the control output
command. This chapter describes how the loops operate, and what you must do to
configure and tune the loops.

Analog Input

Analog or Digital Output

DL250–1 / DL260
Manufacturing ProcessPID Loop Calculations

The best tool for configuring loops in the CPU is the DirectSOFT32 programming
software, Release 2.1 or later. DirectSOFT32 uses dialog boxes to create a
forms-like editor to let you individually set up the loops. After completing the setup,
you can use DirectSOFT32’s PID Trend View to tune each loop. The configuration
and tuning selections you make are stored in the CPUs FLASH memory, which is
retentive. The loop parameters also may be saved to disk for recall later.

Main Features

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–3
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

PID Loop Feature Specifications

Number of loops DL260 – selectable up to 16; DL250–1 – selectable up to 4

CPU V-memory needed 32 words (V locations) per loop selected, 64 words if using ramp/soak

PID algorithm Position or Velocity form of the PID equation

Control Output polarity Selectable direct-acting or reverse-acting

Error term curves Selectable as linear, square root of error, and error squared

Loop update rate (time
between PID calculation)

0.05 to 99.99 seconds, user programmable

Minimum loop update rate 0.05 seconds for 1 to 4 loops (DL250–1/260)
0.1 seconds for 5 to 8 loops (DL260)
0.2 seconds for 9 to 16 loops (DL260)

Loop modes Automatic, Manual (operator control), or Cascade control

Ramp/Soak Generator Up to 8 ramp/soak steps (16 segments) per loop with indication of
ramp/soak step number

PV curves Select standard linear, or square-root extract (for flow meter input)

Set Point Limits Specify minimum and maximum setpoint values

Process Variable Limits Specify minimum and maximum Process Variable values

Proportional Gain Specify gains of 0.01 to 99.99

Integrator (Reset) Specify reset time of 0.1 to 999.8 in units of seconds or minutes

Derivative (Rate) Specify the derivative time from 0.01 to 99.99 seconds

Rate Limits Specify derivative gain limiting from 1 to 20

Bumpless Transfer I Automatically initialized bias and setpoint when control switches from
manual to automatic

Bumpless Transfer II Automatically set the bias equal to the control output when control switches
from manual to automatic

Step Bias Provides proportional bias adjustment for large setpoint changes

Anti-windup For position form of PID, this inhibits integrator action when the control
output reaches 0% or 100 % (speeds up loop recovery when output
recovers from saturation)

Error Deadband Specify a tolerance (plus and minus) for the error term (SP–PV), so that no
change in control output value is made

Alarm Feature Specifications

Deadband Specify 0.1% to 5% alarm deadband on all alarms

PV Alarm Points Select PV alarm settings for Low–low, Low, High, and High-high conditions

PV Deviation Specify alarms for two ranges of PV deviation from the setpoint value

Rate of Change Detect when PV exceeds a rate of change limit you specify

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–4
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

As an introduction to key parts of a control loop, refer to the block diagram shown
below. The closed path around the diagram is the “loop” referred to in “closed loop
control”.

Process Variable

Loop
Calculation

Manufacturing
Process

Setpoint Value

Loop Configuring
and Monitoring

Control Output

External
Disturbances

�
Error Term

+
–

PLC System

Manufacturing Process – the set of actions that adds value to raw materials. The
process can involve physical changes and/or chemical changes to the material. The
changes render the material more useful for a particular purpose, ultimately used in
a final product.
Process Variable – a measurement of some physical property of the raw materials.
Measurements are made using some type of sensor. For example, if the
manufacturing process uses an oven, you will most likely want to control
temperature. Temperature is a process variable.
Setpoint Value – the theoretically perfect quantity of the process variable, or the
desired amount which yields the best product. The machine operator knows this
value, and either sets it manually or programs it into the PLC for later automated use.
External Disturbances – the unpredictable sources of error which the control
system attempts to cancel by offsetting their effects. For example, if the fuel input is
constant an oven will run hotter during warm weather than it does during cold
weather. An oven control system must counter-act this effect to maintain a constant
oven temperature during any season. Thus, the weather (which is not very
predictable), is one source of disturbance to this process.
Error Term – the algebraic difference between the process variable and the
setpoint. This is the control loop error, and is equal to zero when the process variable
is equal to the setpoint (desired) value. A well-behaved control loop is able to
maintain a small error term magnitude.
Loop Calculation – the real-time application of a mathematical algorithm to the
error term, generating a control output command appropriate for minimizing the
error magnitude. Various control algorithms are available, and the CPU uses the
Proportional-Derivative-Integral (PID) algorithm (more on this later).
Control Output – the result of the loop calculation, which becomes a command for
the process (such as the heater level in an oven).
Loop Configuring – operator-initiated selections which set up and optimize the
performance of a control loop. The loop calculation function uses the configuration
parameters in real time to adjust gains, offsets, etc.
Loop Monitoring – the function which allows an operator to observe the status and
performance of a control loop. This is used in conjunction with the loop configuring to
optimize the performance of a loop (minimize the error term).

Getting Acquainted
with PID Loops

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–5
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The diagram below shows each loop element in the form of its real-world physical
component. The example manufacturing process involves a liquid in a reactor
vessel. A sensor probe measures a process variable which may be pressure,
temperature, or another parameter. The sensor signal is amplified through a
transducer, and is sent through the wire in analog form to the PLC input module.
The PLC reads the PV from an analog input. The CPU executes the loop calculation,
and writes to the analog output module location. The CPU executes the loop
calculation, and writes to the analog output. The control output signal may be analog
(proportional) or digital (on/off), depending on loop setup. This signal goes to a
device in the manufacturing process, such as a heater, valve, pump, etc. Over time,
the liquid begins to change enough to be measured on the sensor probe. The
process variable changes accordingly. The next loop calculation occurs, and the
loop cycle repeats in this manner continuously.

Loop
Calculation

Manufacturing
Process

Control Output

Process Variable

Loop Configuration
and Monitoring

The personal computer shown is used to run DirectSOFT32, the PLC programming
software for DirectLOGIC programmable controllers. The software features a
forms-based editor to configure loop parameters. It also features a PID loop trending
screen which will be helpful during the loop tuning process. Details on how to use
that software are in the DirectSOFT32 Manual.

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–6
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Loop Setup Parameters
The DL250–1 and DL260 CPUs gets its PID loop processing instructions only from
tables in V-memory. A “PID instruction” type in RLL does not exist for the DirectLogic
PLCs. Instead, the CPU reads setup parameters from reserved V-memory
locations. Shown in the table below, you must program a value in V7640 to point to
the main loop table. Then you will need to program V7641 with the number of loops
you want the CPU to calculate. V7642 contains error flags which will be set if V7640
or V7641 are programmed improperly.

Address Setup Parameter Data type Ranges Read/Write

V7640 Loop Parameter
Table Pointer

Octal V1400 – V7340,
V10000 – V17740 (DL250–1)
V10000 – V37740 (DL260)

write

V7641 Number of Loops BCD 0 – 4 (DL250–1)
0 – 16 (DL260)

write

V7642 Loop Error Flags Binary 0 or 1 read

If the number of loops is “0”, the loop controller task is turned off during the ladder
program scan. The loop controller will allow use of loops in ascending order,
beginning with 1. For example, you cannot use loop 1 and 4 while skipping 2 and 3.
The loop controller attempts to control the full number of loops specified in V7641.

The Loop Parameter table may occupy a
block of memory in the lower user data
space (V1400 – V7377), or in the upper
user memory data space (V10000 –
V17777 for the 250–1 and V10000 –
V37740 for the DL260) as shown to the
right. Be sure to choose an available space
in the memory map for you application.
The value in V7641 tells the CPU how big
the loop table is (there are 32 locations for
each loop).
The DirectSOFT32 PID Setup dialog box
offers you one way to program these
parameters. It’s also possible to use ladder
commands such a LDA or LD, and OUT
instructions. However, these memory
locations are part of the retentive system
parameters, so writing them from RLL is
not required.

V–Memory Space

User Data

Loop Table Pointer

LOOP
TABLE

LOOP
TABLE

V1400

User Data, cont’d

V7640,

V7377

V10000

V17777

OR
V7641

The CPU reports any programming errors
of the setup parameters in V7640 and
V7641. It does this by setting the
appropriate bits in V7642 on
program-to-run mode transitions.

PID Error Flags, V7642

013456789101112131415 2Bit

If you use the DirectSOFT32 loop setup dialog box, its automatic range checking
prohibits possible setup errors. However, the setup parameters may be written using
other methods such as RLL, so the error flag register may be helpful in those cases.

Loop Table and
Number of Loops

PID Error Flags

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–7
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The following table lists the errors reported in V7642.

Bit Error Description (0 = no error, 1 = error)

0 The starting address (in V7640) is out of the lower V-memory range.

1 The starting address (in V7640) is out of the upper V-memory range.

2 The number of loops selected (in V7641) is greater than 4.

3 The loop table extends past (straddles) the boundary at V7377. Use an
address closer to V1400.

4 The loop table extends past (straddles) the boundary at V17777
(DL250–1) or V37777 (DL260). Use an address closer to V10000.

As a quick check, if the CPU is in Run mode and V7642=0000, then we know there
are no programming errors.

On a program -to-run mode transition, the CPU reads the loop setup parameters as
pictured below. At that moment, the CPU learns the location of the loop table and the
number of loops it configures. Then during the ladder program scan, the PID Loop
task uses the loop data to perform calculations, generate alarms, and so on. There
are some loop table parameters the CPU will read or write on every loop calculation.

READ
(at powerup)

CONFIGURE/
MONITOR

V–Memory Space

User Data

Setup Parameters

LOOP
DATA

CPU Tasks

READ/
WRITELadder

Program

PID Loop
Task

DirectSOFT32 Programming Soft-
ware

V7640, V7641

The Loop Parameter table contains data for
only as many loops selected by the value
you have programmed in V7641. Each loop
configured occupies 32 words (0 to 37
octal) in the loop table.
For example, suppose we have an
application with 4 loops. Arbitrarily, we
choose V2000 as the starting location. The
Loop Parameter will occupy V2000 – V2037
for loop 1, V2040 – V2077 for loop 2 and so
on. Loop 4 occupies V2140 – V2177.

V–Memory User Data

V2000
V2037
V2040
V2077

.

.

.

LOOP #1

LOOP #2

LOOP #3

LOOP #4

32 words

32 words

32 words

32 words

Establishing the
Loop Table Size
and Location

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–8
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The parameters associated with each loop are listed in the following table. The
address offset is in octal, to help you locate specific parameters in a loop table. For
example, if a table begins at V2000, then the location of the reset (integral) term is
Addr+11, or V2011. Do not use the word# to calculate addresses.

Word # Address+Offset Description Format Read on-
the-fly

1 Addr + 0 PID Loop Mode Setting 1 bits Yes

2 Addr + 1 PID Loop Mode Setting 2 bits Yes

3 Addr + 2 Setpoint Value (SP) word/binary Yes

4 Addr + 3 Process Variable (PV) word/binary Yes

5 Addr + 4 Bias (Integrator) Value word/binary Yes

6 Addr + 5 Control Output Value word/binary Yes

7 Addr + 6 Loop Mode and Alarm Status bits –

8 Addr + 7 Sample Rate Setting word/BCD Yes

9 Addr + 10 Gain (Proportional) Setting word/BCD Yes

10 Addr + 11 Reset (Integral) Time Setting word/BCD Yes

11 Addr + 12 Rate (Derivative) Time Setting word/BCD Yes

12 Addr + 13 PV Value, Low-low Alarm word/binary No*

13 Addr + 14 PV Value, Low Alarm word/binary No*

14 Addr + 15 PV Value, High Alarm word/binary No*

15 Addr + 16 PV Value, High-high Alarm word/binary No*

16 Addr + 17 PV Value, deviation alarm (YELLOW) word/binary No*

17 Addr + 20 PV Value, deviation alarm (RED) word/binary No*

18 Addr + 21 PV Value, rate-of-change alarm word/binary No*

19 Addr + 22 PV Value, alarm hysteresis setting word/binary No*

20 Addr + 23 PV Value, error deadband setting wordbinary Yes

21 Addr + 24 PV low–pass filter constant word/BCD Yes

22 Addr + 25 Loop derivative gain limiting factor setting word/BCD No**

23 Addr + 26 SP value lower limit setting word/binary Yes

24 Addr + 27 SP value upper limit setting word/binary Yes

25 Addr + 30 Control output value lower limit setting word/binary No**

26 Addr + 31 Control output value upper limit setting word/binary No**

27 Addr + 32 Remote SP Value V-Memory Address Pointer word/hex Yes

28 Addr + 33 Ramp/Soak Setting Flag bit Yes

29 Addr + 34 Ramp/Soak Programming Table Starting Address word/hex No**

30 Addr + 35 Ramp/Soak Programming Table Error Flags bits No**

31 Addr + 36 PV auto transfer: base/slot/channel option or
V–memory pointer option

word/hex Yes

32 Addr + 37 Control output auto transfer, base/slot/channel word/hex Yes

* Read data only when alarm enable bit transitions 0 to1 ** Read data only on PLC Mode change

Loop Table
Word Definitions

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–9
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The bit definitions for PID Mode Setting 1 word (Addr+00) are listed in the following
table. More information about the use of this word is available later in this chapter.

Bit PID Mode Setting 1 Description Read/Write Bit=0 Bit=1

0 Manual Mode Loop Operation request write – 0�1
request

1 Automatic Mode Loop Operation re-
quest

write – 0�1
request

2 Cascade Mode Loop Operation request write – 0�1
request

3 Bumpless Transfer select write Mode I Mode II

4 Direct or Reverse-Acting Loop select write Direct Reverse

5 Position / Velocity Algorithm select write Position Velocity

6 PV Linear / Square Root Extract select write Linear Sq. root

7 Error Term Linear / Squared select write Linear Squared

8 Error Deadband enable write Disable Enable

9 Derivative Gain Limit select write Off On

10 Bias (Integrator) Freeze select write Off On

11 Ramp/Soak Operation select write Off On

12 PV Alarm Monitor select write Off On

13 PV Deviation alarm select write Off On

14 PV rate-of-change alarm select write Off On

15 Loop mode is independent from CPU
mode when set

write Loop with
CPU mode

Loop

Independent
of CPU mode

PID Mode Setting 1
Bit Descriptions
(Addr + 00)

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–10
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The bit definitions for PID Mode Setting 2 word (Addr+01) are listed in the following
table. More information about the use of this word is available later in this chapter.

Bit PID Mode Setting 2 Description Read/Write Bit=0 Bit=1

0 Input (PV) and Control Output Range
Unipolar/Bipolar select
(See Notes 1 and 2)

write unipolar bipolar

1 Input/Output Data Format select
(See Notes 1 and 2)

write 12 bit 15 bit

2 Analog Input (PV) filter write off on

3 SP Input limit enable write disable enable

4 Integral Gain (Reset) units select write seconds minutes

5 Select Autotune PID algorithm write closed loop open loop

6 Autotune selection write PID PI only
(rate = 0)

7 Autotune start read/write autotune
done

force start

8 PID Scan Clock (internal use) read – –

9 Input/Output Data Format 16-bit select
(See Notes 1 and 2)

write not
16 bit

select
16 bit

10 Select separate data format for input and
output (See Notes 2 and 3)

write same
format

separate
formats

11 Control Output Range
Unipolar/Bipolar select
(See Notes 2 and 3)

write unipolar bipolar

12 Output Data Format select
(See Notes 2 and 3)

write 12 bit 15 bit

13 Output data format 16-bit select
(See Notes 2 and 3)

write not
16 bit

select
16 bit

14–15 Reserved for future use – – –

Note 1: If the value in bit 9 is 0, then the values in bits 0 and 1 are read. If the value in
bit 9 is 1, then the values in bits 0 and 1 are not read, and bit 9 defines the
data format (the range is automatically unipolar).

Note 2: If the value in bit 10 is 0, then the values in bits 0, 1, and 9 define the input and
output ranges and data formats (the values in bits 11, 12, and 13 are not
read). If the value in bit 10 is 1, then the values in bits 0, 1, and 9 define only
the input range and data format, and bits 11, 12, and 13 are read and define
the output range and data format.

Note 3: If bit 10 has a value of 1 and bit 13 has a value of 0, then bits 11 and 12 are
read and define the output range and data format. If bit 10 and bit 13 each
have a value of 1, then bits 11 and 12 are not read, and bit 13 defines the data
format, (the output range is automatically unipolar).

PID Mode Setting 2
Bit Descriptions
(Addr + 01)

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–11
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The individual bit definitions of the Mode / Alarm monitoring word (Addr+06) are listed
in the following table. More details are in the PID Mode section and Alarms section.

Bit Mode / Alarm Bit Description Read/Write Bit=0 Bit=1

0 Manual Mode indication read – Manual

1 Automatic Mode indication read – Auto

2 Cascade Mode indication read – Cascade

3 PV Input LOW–LOW alarm read Off On

4 PV Input LOW alarm read Off On

5 PV Input HIGH alarm read Off On

6 PV Input HIGH–HIGH alarm read Off On

7 PV Input YELLOW Deviation alarm read Off On

8 PV Input RED Deviation alarm read Off On

9 PV Input Rate-of-Change alarm read Off On

10 Alarm Value Programming error read – Error

11 Loop Calculation Overflow/Underflow read – Error

12 Loop in Auto–Tune indication read Off On

13 Auto–Tune error indication read Off On

14–15 Reserved for future use – – –

The individual bit definitions of the Ramp / Soak Table Flag word (Addr+33) is listed
in the following table. Further details are given in the Ramp / Soak Operation section.

Bit Ramp / Soak Flag Bit Description Read/Write Bit=0 Bit=1

0 Start Ramp / Soak Profile write – 0�1 Start

1 Hold Ramp / Soak Profile write – 0�1 Hold

2 Resume Ramp / soak Profile write – 0�1
Resume

3 Jog Ramp / Soak Profile write – 0�1 Jog

4 Ramp / Soak Profile Complete read – Complete

5 PV Input Ramp / Soak Deviation read Off On

6 Ramp / Soak Profile in Hold read Off On

7 Reserved read – –

8–15 Current Step in R/S Profile read decode as byte (hex)

Bits 8–15 must be read as a byte to indicate the current segment number of the
Ramp/Soak generator in the profile. This byte will have the values 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, F, and 10. which represent segments 1 to 16 respectively. If the
byte=0. then the Ramp/Soak table is not active.

Mode / Alarm
Monitoring Word
(Addr + 06)

Ramp / Soak Table
Flags
(Addr + 33)

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–12
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Each loop that you configure has the option of using a built-in Ramp/Soak generator
dedicated to that loop. This feature generates SP values in a continuous stream,
called a profile. To use the Ramp Soak feature, you must program a separate table of
32 words with appropriate values. A DirectSOFT32 dialog box makes this easy to
do.
In the basic loop table, the Ramp / Soak Table Pointer at Addr+34 must point to the
start of the ramp/soak data for that loop. This may be anywhere in user memory, and
does not have to be adjoining to the Loop Parameter table, as shown to the left. Each
R/S table requires 32 words, regardless of the number of segments programmed.
The ramp/soak table parameters are defined in the table below. Further details are in
the section on Ramp / Soak Operation in this chapter.

Addr
Offset

Step Description Addr
Offset

Step Description

+ 00 1 Ramp End SP Value + 20 9 Ramp End SP Value

+ 01 1 Ramp Slope + 21 9 Ramp Slope

+ 02 2 Soak Duration + 22 10 Soak Duration

+ 03 2 Soak PV Deviation + 23 10 Soak PV Deviation

+ 04 3 Ramp End SP Value + 24 11 Ramp End SP Value

+ 05 3 Ramp Slope + 25 11 Ramp Slope

+ 06 4 Soak Duration + 26 12 Soak Duration

+ 07 4 Soak PV Deviation + 27 12 Soak PV Deviation

+ 10 5 Ramp End SP Value + 30 13 Ramp End SP Value

+ 11 5 Ramp Slope + 31 13 Ramp Slope

+ 12 6 Soak Duration + 32 14 Soak Duration

+ 13 6 Soak PV Deviation + 33 14 Soak PV Deviation

+ 14 7 Ramp End SP Value + 34 15 Ramp End SP Value

+ 15 7 Ramp Slope + 35 15 Ramp Slope

+ 16 8 Soak Duration + 36 16 Soak Duration

+ 17 8 Soak PV Deviation + 37 16 Soak PV Deviation

The individual bit definitions of the Ramp / Soak Table programming error flags
(Addr+35) word is listed in the following table. Further details are given in the PID
Loop Mode section and in the PV Alarm section later in this chapter.

Bit R/S Error Flag Bit Description Read/
Write

Bit=0 Bit=1

0 Starting Addr out of lower V-memory range read – Error

1 Starting Addr out of upper V-memory range read – Error

2–3 Reserved for Future Use – – –

4 Starting Addr in System Parameter
V-memory Range

read – Error

5–15 Reserved for Future Use – – –

Ramp/Soak
Table Location
(Addr + 34)

V–Memory Space

User Data

LOOP #1V2000

32 words

LOOP #2
32 words

V2037

Ramp/Soak #1
32 words

V3000

V2034 = 3000 octal
Pointer to R/S table

Ramp/Soak Table
Programming Error
Flags
(Addr + 35)

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–13
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The nibble definitions for PV Auto Transfer word (Addr + 36) are listed in the table
below for the Transfer from Base/Slot option. When this option is used for any
channel on an analog input module, the ladder logic pointer method cannot be
used for this module. (Refer to the DL205 Analog I/O Modules (D2–ANLG–M) for
pointer method information).

MSB LSB

Base
Number

Base
Slot
Number

Channel
Number

15
Bit 15 will be OFF when

auto transfer from

Base/Slot is selected

0 0

Not
Used

CPU Base Number Base
Slot Number

Channel Number

DL250–1 Local CPU base = 0
Local expansion base = 1–2

0–7 1–8

DL260 Local base = 0
Local expansion base = 1–4

The definitions for PV Auto Transfer word (Addr + 36) are listed in the table below for
the Transfer from V–memory option. The ladder logic pointer method can be used
with this option to get the analog module’s channel values into V–memory. (Refer to
the DL205 Analog I/O Modules (D2–ANLG–M) for pointer method information).

Bit 15 will be ON when auto

transfer from V–memory is

selected
V–Memory Address (Hex format)

MSB LSB
15 0 0

Memory Type DL250–1 Range DL260 Range

V memory V V1400–V7377
V10000–V17777

V400–V677
V1400–V7377

V10000–V35777

The nibble definitions for the Control Output Auto Transfer word (Addr + 37) are
listed in the table below. When the Control Output Auto Transfer function is used
for any channel on an analog output module, the ladder logic pointer method
cannot be used for this module. (Refer to the DL205 Analog I/O Modules
(D2–ANLG–M) for pointer method information).

MSB LSB
15 0 0

Ch
NuBase

Number
Base
Slot
Number

Channel
Number

Not
Used

CPU Base Number Base
Slot Number

Channel Number

DL250–1 Local CPU base = 0
Local expansion base = 1–2

0–7 1–8

DL260 Local base = 0
Local expansion base = 1–4

PV Auto Transfer
(Addr + 36) from
I/O Module
Base/Slot/Channel
Option

PV Auto Transfer
(Addr + 36) from
V–memory Option

Control Output
Auto Transfer
(Addr + 37)

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–14
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Loop Sample Rate and Scheduling

The main tasks of the CPU fall into
categories as shown to the right. The list
represents the tasks done when the CPU
is in Run Mode, on each PLC scan. Note
that PID loop calculations occur after the
ladder logic task. From the user
point-of-view, loops can be running when
the ladder is not.
The sample rate of a control loop is simply
the frequency of the PID calculation. Each
calculation generates a new control output
value. With the DL250–1 and DL260
CPUs, you can set the sample rate of a
loop from 50 mS to 99.99 seconds. So for
most loops, the PID calculation will not
occur on every PLC scan. In fact, some
loops may need calculating only once in
1000 scans.
You select the desired sample rate for
each loop, and the CPU automatically
schedules and executes PID calculations
on the appropriate scans.

Read
Inputs

Service
Peripherals

Ladder
Program

Calculate
PID Loops

Internal
Diagnostics

Write
Outputs

PLC
Scan

For any particular control loop, there is no single perfect sample rate to use. A good
sample rate is a compromise that simultaneously satisfies various guidelines:

� The desired sample rate is proportional to the response time of the PV
to a change in control output. Usually, a process with a large mass will
have a slow sample rate, but a small mass needs a faster sample rate.

� Faster sample rates provide a smoother control output and accurate PV
performance, but use more CPU processing time. Sample rates much
faster than necessary serve only to waste CPU processing power.

� Slower sample rates provide a rougher control output and less accurate
PV performance, but use less CPU processing time.

� A sample rate which is too slow will cause system instability, particularly
when a change in the setpoint or a disturbance occurs.

As a starting point, we can determine a sample rate for any particular rate which will
be fast enough to avoid control instability (which is extremely important). Do the
following procedure to find a starting sample rate:

Loop Sample Rates

Choosing the Best
Sample Rate

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–15
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

1. Operate the process open-loop (the loop does not even need to be
configured yet). Place the CPU in run mode (and the loop in Manual mode,
if you have already configured it). Manually set the control output value so
the PV is stable and in the middle of a safe range.

2. Try to choose a time when the process will have negligible external
disturbances. Then induce a sudden 10% step change in the control value.

3. Record the rise or fall time of the PV (time between 10% to 90% points).
4. Divide the recorded rise or fall time by 10. This is the initial sample rate you

can use to begin tuning your loop.

Control
Output

PV

10% of full output range

Rise Time

10%

90%

Sample
Rate

In the figure above, suppose the measured rise time response of the PV was 25
seconds. The suggested sample rate from this measurement will be 2.5 seconds.
For illustration, the sample rate time line shows ten samples within the rise time
period. These show the frequency of PID calculations as the PV changes values. Of
course, the sample rate and PID calculations are continuous during operation.

NOTE: An excessively fast sample rate will diminish the available resolution in the
PV Rate-of-Change Alarm, because the alarm rate value is specified in terms of PV
change per sample period. For example, a 50 mS sample rate means the smallest
PV rate-of-change we can detect is 20 PV counts (least significant bit counts) per
second, or 1200 LSB counts per minute.

The Loop Parameter table for each loop has data locations for the sample rate.
Referring to the figure below, location V+07 contains a BCD number from 00.05 to
99.99 (with an implied decimal point). This represents 50 mS to 99.99 seconds. This
number may be programmed using DirectSOFT32’s PID Setup screen, or any other
method of writing to V-memory. It must be programmed before the loop will operate
properly.

Process Variable

�
Error Term

+
–

Control OutputSetpoint

X X X X

Sample Rate–V+07

Loop
Calculation

BCD
Sample Rate

00.05 to 99.99 sec

Programming the
Sample Rate

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–16
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Since PID loop calculations are a task within the CPU scan activities, the use of PID
loops will increase the average scan time. The amount of scan time increase is
proportional to the number of loops used and the sample rate of each loop.

The execution time for a single loop
calculation depends on the number of
options selected, such as alarms, error
squared, etc. The chart to the right gives
the range of times you can expect.

PID Calculation Time

150 �S

250 �S

350 �S

Minimum

Typical

Maximum

To calculate scan time increase, we also must know (or estimate) the scan time of
the ladder (without loops), because a fast scan time will increase by a smaller
percentage than a slow scan time will, when adding the same PID loop calculation
load in each case. The formula for average scan time calculation is:

Avg. Scan Time with PID loop =
Scan time without loop

Sample rate of loop
X PID calculation time + Scan time without loop

For example, suppose the estimated scan time without loop calculations is 50 mS,
and the loop sample time is 3 seconds. Now, we calculate the new scan time:

Average Scan time with PID loop =
50 mS

3 sec.
X 250 �S + 50 mS = 50.004 mS

As the calculation shows, the addition of only one loop with a slow sample rate has a
very small effect on scan time. Next, we expand equation above to show the effect of
adding any number of loops:

Avg. Scan Time with PID loops =
Scan time without loop

Sample rate of nth loop
X PID calculation time + Scan time

without loops�
n=1

n=L

In the new equation above, we must calculate the summation term (inside the
brackets) for each loop from 1 to L (last loop), and add the right-most term “scan time
without loops” only once at the end. Suppose we have a DL250 CPU controlling four
loops. The table below shows the data and summation term values for each loop.

Loop Number Description Sample Rate Summation Term

1 Steam Flow, Inlet valve 0.25 sec 50 �S

2 Water bath temperature 30 sec 0.42 �S

3 Dye level, main tank 10 sec 1.25 �S

4 Steam Pressure, Autoclave 1.5 sec 8.3 �S

Now adding the summation terms, plus the original scan time value, we have:

Avg. Scan Time with PID loops = + 50 mS = 50.06 mS50 �S + 0.42 �S + 1.25 �S + 8.3 �S

PID Loop Effect
on CPU Scan Time

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–17
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The DL250–1 and DL260 CPUs only do PID calculation on a particular scan for the
loop(s) which have sample time periods that are due for an update (calculation). The
built-in loop scheduler applies the following rules:

� Loops with sample rates � 2 seconds are processed at the rate of as
many loops per scan as is required to maintain each loop’s sample rate.
Specifying loops with fast sample rates will increase the PLC scan time.
So, use this capability only if you need it!

� Loops with sample rates > 2 seconds are processed at the rate of one
or less loops per scan, at the minimum rate required to maintain each
loop’s sample rate.

The implementation of loop calculation scheduling is shown in the flow chart below.
This is a more detailed look at the contents of the “Calculate PID Loops” task in the
CPU scan activities flow chart. The pointers “I” and “J” correspond to the slow (> 2
sec) and fast (� 2 sec) loops, respectively. The flow chart allows the J pointer to
increment from loop 1 to the last loop, if there are any fast loops specified. The I
pointer increments only once per scan, and then only when the next slow loop is due
for an update. In this way, both I and J pointers cycle from 1 to the highest loop
number used, except at different rates. Their combined activity keeps all loops
properly updated.

Loop J
Sample rate � 2 sec?

No

Yes

Loop J
PID Calculation

Loop J
Time up?

No

J > total
number of loops?

No Yes

Loop I
Time up?

Loop I
PID Calculation

Yes

I > total number
selected loops?

Yes

No

Yes

Set J = J+1 Set J = 0

Set I = I+1

Set I=0

Loop Sample Times � 2 seconds: Loop Sample Times > 2 seconds:

Begin PID loop task

End PID loop task

No

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–18
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Ten Steps to Successful Process Control
Modern electronic controllers such as the DL250–1 and DL260 CPUs provide
sophisticated process control features. Automated control systems can be very
difficult to debug, because a given symptom can have many possible causes. We
recommend a careful, step-by-step approach to bringing new control loops online:

The most important knowledge is – how to make your product. This knowledge is
the foundation for designing an effective control system. A good process “recipe”
will do the following:
� Identify all relevant Process Variables, such as temperature, pressure, or

flow rates, etc. which need precise control.
� Plot the desired Setpoint values for each process variables for the duration

of one process cycle.

This simply means choosing the method the machine will use to maintain control
over the Process Variable(s) to follow their Setpoints. This involves many issues and
trade-offs, such as energy efficiency, equipment costs, ability to service the machine
during production, and more. You must also determine how to generate the Setpoint
value during the process, and whether a machine operator can change the SP.

Assuming the control strategy is sound, it is still crucial to properly size the actuators
and properly scale the sensors.

� Choose an actuator (heater, pump. etc.) which matches the size of the
load. An oversized actuator will have an overwhelming effect on your
process after a SP change. However, an undersized actuator will allow
the PV to lag or drift away from the SP after a SP change or process
disturbance.

� Choose a PV sensor which matches the range of interest (and control)
for our process. Decide the resolution of control you need for the PV
(such as within 2 deg. C), and make sure the sensor input value
provides the loop with at least 5 times that resolution (at LSB level).
However, an over-sensitive sensor can cause control oscillations, etc.
The DL250–1 and DL260 provides 12-bit, 15-bit and 16–bit unipolar and
bipolar data format options. This selection affects SP, PV, Control
Output, and Integrator sum.

After deciding the number of loops, PV variables to measure, and SP values, we can
choose the appropriate I/O modules. Refer to the figure on the next page. In many
cases, you will be able to share input or output modules among several control
loops. The example shown sends the PV and Control Output signals for two loops
through the same set of modules.
Remember that we offer DL205 analog modules with 2, 4, and 8
channels per module in different signal types and ranges. Refer to the sales catalog
for further information on specific modules. The analog modules have their own
manual, which will be essential during most installations.

Step 1:
Know the Recipe

Step 2:
Plan Loop
Control Strategy

Step 3:
Size and Scale
Loop Components

Step 4:
Select I/O Modules

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–19
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Loop 1 Data
SP

V-memory Output
Module

DL250 CPU

Input
Module

Channel 1 Process 1

Process 2

PV OUT

Channel 2
Loop 2 Data

SPPV OUT

Channel 3

Channel 4

Channel 1

Channel 2

After selection and procurement of all loop components and I/O modules, we can
perform the wiring and installation. Refer to the wiring guidelines in Chapter 2 of this
Manual, and to the DL205 Analog I/O Module manual as needed. The most
commonly overlooked wiring details in installing PID loop controls are:

� It’s easy to reverse the polarity of connection on sensor wiring.
� Pay attention to signal ground connections between loop components.

After wiring and installation, we can choose the loop setup parameters. The easiest
method for programming the loop tables is using DirectSOFT32’s PID Setup dialog
boxes. Be sure to study the meaning of all loop parameters in this chapter before
choosing values to enter.

With the sensors and actuator wiring done, and loop parameters entered, we must
manually and carefully check out the new control system (use Manual Mode).

� Verify the PV value from the sensor is correct.
� If it is safe to do so, gradually increase the control output up above 0%,

and see if the PV responds (and moves in the correct direction!).

If the open loop test shows the PV reading is good and the control output has the
proper effect on the process, we can do the closed loop tuning procedure (Automatic
Mode). In this most crucial step, we tune the loop so the PV automatically follows the
SP. Refer to the section on Loop Tuning in this chapter.
If the closed loop test shows PV will follow small changes in the SP, we can consider
running an actual process cycle. Now we must do the programming to generate the
desired SP in real time. In this step, you may run a small test batch of product through
the machine, while the SP changes according to the recipe.

WARNING: Be sure the Emergency Stop and power-down provision is readily
accessible, in case the process goes out of control. Damage to equipment and/or
serious injury to personnel can result from loss of control of some processes.

When the loop tests and tuning sessions are complete, be sure to save all loop setup
parameters to disk. Loop parameters represent a lot of work in loop tuning, and are
well worth saving.

Step 5:
Wiring and
Installation

Step 6:
Loop Parameters

Step 7:
Check Open Loop
Performance

Step 8:
Loop Tuning

Step 9:
Run Process Cycle

Step 10:
Save Loop
Parameters

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–20
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Basic Loop Operation

Each PID loop is completely dependent on the instructions and data values in its
respective loop table. The following diagram shows the loop table locations
corresponding to the main three loop I/O variables: SP, PV, and Control Output. The
example loop table below begins at V2000 (an arbitrary location to be chosen by the
user). The SP, PV and Control Output are located at the addresses shown.

Process Variable V+03

Loop
Calculation�

Error
Term+

–

Control Output V+05Setpoint V+02

Loop Table

V2002 SetpointXXXX

V2003 Process VariableXXXX

V2005 Control OutputXXXX

The data for the SP, PV, and Control Output must interface with real-word sources
and devices. In the figure below, the sources or destinations are shown for each loop
variable. The Control Output and Process Variable values move through the
appropriate analog module to interface with the process itself. A small amount of
ladder logic is required to copy data from the loop table to the analog I/O module’s
memory address, and vise-versa. Remember that most analog modules have
multiplexed data, with two or three channel address decode bits. Refer to the analog
module manual for ladder examples that show how to move analog data between
DL205 analog modules and an arbitrary V-memory location.

Process Variable V+03

Loop
Calculation�+

–

Control Output V+05Setpoint V+02

Analog
Output

Analog
Input

Setpoint Sources:

Operator Input
Ramp/soak generator
Ladder Program
Another loop’s output (cascade)

Process

The Setpoint has several possible sources, listed in the figure above. Many
applications will use two or more of the sources at various times, depending on the
loop mode. In addition, the loop control topology and programming method also
determine how the setpoint is generated. When using the built-in Ramp/Soak
generator or when cascading a loop, the PID controller automatically writes the
setpoint data in location V+02 for you. However, the ladder program must write
the setpoint to that loop table location when generated from any other source,
unless the source (HMI) can write directly to the v–memory location.
Obviously, each of the three main loop parameters will have only one source or
destination at any given time. During the application development, it’s a good idea to
draw loop schematic diagrams showing data sources, etc. to help avoid mistakes.

Data Locations

Data Sources

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–21
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The loop controller in the DL250–1 and DL260 CPUs have the ability to directly
access (referred to as auto transfer) analog I/O values or V–memory registers apart
from the ladder logic scan. In particular, these parameters are the process variable
(PV) and the control output. This feature is helpful if you must perform closed-loop
PID control while the CPU is in Program Mode or if you wish to use the pointer
method for the analog I/O or calculations in ladder logic to provide the PV values
when in RUN mode. The loop controller can read the analog PV value in the selected
data format from the desired analog module, and write the control output value to the
desired output module. This auto transfer feature, when enabled, accesses the
analog values only once per PID calculation for each respective loop.

You may optionally configure each loop to access its analog I/O (PV and control
output) by placing proper values in the associated loop table registers. The following
figure shows the loop table parameters at V+36 and V+37 and their role in direct
access to the analog values.

���������	�
	�����
��

Loop
Calculation�

�����

�

����������������
�������
����
��

Loop Table

V2036 Base/Slot /Channel number for PV0X XX

V2037 Base/Slot/Channel number for Output0X XX

XX 0X
��	�������������������

������������������

!	����������������"�#$%�&�'�(��������#$%�����'

�)	�������
�*��������+����,�	��-���-����.(����/����!	��(�������	��������
��

You may program these loop table parameters directly, or use the PID Setup feature
in DirectSOFT32 for easy configuring. For example, a value of “0102” in register
V2036 directs the loop controller to read the PV data from slot number 1, and the
second channel. Note that slot 1 is the second slot to the right of the CPU, because
slot 0 is adjacent to the CPU. A value of “0000” in either register tells the loop
controller not to access the corresponding analog value directly. In that case, ladder
logic must transfer the value between the loop table and the physical I/O module.
If the PV or control output values require some math manipulation by ladder logic,
then it will not be possible to use the auto transfer to/from I/O function of the loop
controller. In this case, ladder logic will need to be used to perform the math and
transfer the data to or from the analog modules as required.

NOTE: If the auto transfer to/from I/O function is used, the analog data for all of the
channels on the analog modules being used with this feature cannot be accessed by
any other method, i.e., pointer or multiplex.

Auto Transfer
to Analog I/O

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–22
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

In PID Loop applications, we have control situations that frequently occur throughout
the industry. In each scenario, we slightly modify the source of data for the basic
three variables SP, PV, and control output, creating a mode name for each scenario.
The modes featured in the DL250–1 and DL260 CPUs are Manual, Automatic, and
Cascade. After this introduction to the modes, we will study how to request mode
changes.

In Manual Mode, the loop is not executing PID calculations (however, loop alarms
are still active). With regard to the loop table, the CPU stops writing values to location
V+05 for that loop. It is expected that an operator or other intelligent source is
manually controlling the output, by observing the PV and writing data to V+05 as
necessary to keep the process under control. The drawing below shows the
equivalent schematic diagram of manual mode operation.

Loop
Calculation

Control Output V+05

Input from Operator Manual

Auto

In Automatic Mode, the loop operates normally and generates new control output
values. It calculates the PID equation and writes the result in location V+05 every
sample period of that loop. The equivalent schematic diagram is shown below.

Loop
Calculation

Control Output V+05

Input from Operator Manual

Auto

In Cascade Mode, the loop operates like in Automatic Mode, with one important
change. The data source for the SP changes from its normal location at V+02, using
the control output value from another loop (the purpose of cascading loops is
covered later in this chapter). So in Auto or Manual modes, the loop calculation uses
the data at V+02. In Cascade Mode, the loop calculation reads the control output
from another loop’s parameter table.

Process Variable

�+
–

Setpoint

Cascade

Auto/Manual

Control Output V+05

Normal SP V+02

Loop
Calculation

Control Output

Loop
Calculation

Cascaded loopAnother loop

Realizing the way PID calculations change data sources according to the
Manual/Auto/Cascade modes, naturally some restrictions on mode changes exist.
As pictured below, a loop change from one mode to another, but cannot go from
Manual Mode to Cascade. This mode change is prohibited because a loop would be
changing two data sources at the same time, and could cause a loss of control.

Manual Automatic Cascade

Loop Modes

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–23
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

One very powerful aspect of the loop controller on the DL250–1 and DL260 CPUs is
it’s ability to run PID calculations while the CPU is in Program Mode. It is usually true
that a CPU in Program Mode has halted all operations. However, the CPU in
Program Mode may or may not be running PID calculations, depending on your
configuration settings. Having the ability to run loops independently of the ladder
logic makes it feasible to make a ladder logic change while the process is still
running. This is especially beneficial for large-mass continuous processes that are
difficult or costly to interrupt.
Of course, loops that run independent of the ladder scan must have the ability to
directly access the analog module channels for the PV and control output values.
The loop controller does have this capability, which is covered in the section on direct
access of analog I/O (located prior to this section in this chapter).
The relationship between CPU modes and loop modes is depicted in the figure
below. The vertical dashed line shows the optional relationship between the mode
changes. Bit 15 of PID Mode 1 setting word V+00 determines the selection. If set to
zero so the loop follows the CPU mode, then placing the CPU in Program Mode will
force all loops into Manual Mode. Similarly, placing the CPU in Run mode will allow
each loop to return to the mode it was in previously (which includes Manual,
Automatic, and Cascade). With this selection you automatically affect the modes of
the loops by changing the CPU mode.

Manual Automatic Cascade0�/����	�*�

��1������-����2���%����/�

0�/����	�*�

Program Run0�/����	�*�

CPU Modes:

Loop
Modes:

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Loop Mode Linking

��1������
��
�/����/���
-�����%����/�

If Bit 15 is set to one, then the loops will run independently of the CPU mode. It is like
having two independent processors in the CPU... one is running ladders and the
other is running the process loops.

NOTE: If you choose for the loops to operate independently of the CPU mode, then
you must take special steps in order to change any loop table parameter values. The
procedure is to temporarily make the loops follow the CPU mode. Then your
programming device (such as DirectSOFT32) will be able to place the loop you want
to change into Manual Mode. After you change the loop’s parameter setting, be sure
to restore the loop independent operation setting.

CPU Modes and
Loop Modes

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–24
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The first three bits of the PID Mode 1 word
V+00 requests the operating mode of the
corresponding loop. Note: these bits are
mode change requests, not commands
(certain conditions can prohibit a
particular mode change – see next page).

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Automatic
Cascade Manual

The normal state of these mode request bits is “000”. To request a mode change, you
must SET the corresponding bit to a “1”, for one scan. The PID loop controller
automatically resets the bits back to “000” after it reads the mode change request.
Methods of requesting mode changes are:

� DirectSOFT32’s PID View – this is the easiest method. Click on one of
the radio buttons, and DirectSOFT sets the appropriate bit.

� HPP – Use Word Status (WD ST) to monitor the contents of V+00,
which will be a 4-digit BCD/hex value. You must calculate and enter a
new value for V+00 that ORs the correct mode bit with its current value.

� Ladder program– ladder logic can request any loop mode when the
PLC is in Run Mode. This will be necessary after application startup.

Use the program shown to the right to SET
the mode bit on (do not use an out coil). On
a 0–1 transition of X0, the rung sets the
Auto bit = 1. The loop controller resets it.

X0

SET
B2000.1

Go to Auto Mode

� Operator panel – interface the operator’s panel to ladder logic using
standard methods, then use the technique above to set the mode bit.

Since we can only request mode changes, the PID loop controller decides when to
permit mode changes and provides the loop mode status. It reports the current mode
on bits 0, 1, and 2 of the Loop Mode and Alarm Status word, location V+06 in the loop
table. The parallel request / monitoring functions are shown in the figure below. The
figure also shows the mode-dependent two possible SP sources, and the two
possible Control Output sources.

Process Variable

�
Error Term

+
–

Input from Operator

Control Output

Setpoint

Manual

Auto/Cascade

Cascade

Auto/Manual

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Automatic
Cascade Manual

Control Output
from another loop

Normal Source

Loop
Calculation

PID Mode
Control

Mode Select

Loop Mode and Alarm Status V+06

013456789101112131415 2Bit

Automatic
Cascade Manual

Mode Request Mode Monitoring

How to Change
Loop Modes

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–25
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Since the modes Manual, Auto, and Cascade are the most fundamental and
important PID loop controls, you may want to “hard-wire” mode control switches to
an operator’s panel. Most applications will need only Manual and Auto selections
(Cascade is used in a few advanced applications). Remember that mode controls
are really mode request bits, and the actual loop mode is indicated elsewhere.
The following figure shows an operator’s panel using momentary push-buttons to
request PID mode changes. The panel’s mode indicators do not connect to the
switches, but interface to the corresponding data locations.

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Operator’s Panel

Loop Mode and Alarm Status V+06

013456789101112131415 2Bit

Mode Request Mode Monitoring

Auto

Cascade

Manual

If you have selected the option for the loops to follow the PLC mode, the PLC modes
(Program, Run) interact with the loops as a group. The following summarizes this
interaction:

� When the PLC is in Program Mode, all loops are placed in Manual Mode
and no loop calculations occur. However, note that output modules
(including analog outputs) turn off in PLC Program Mode. So, actual
manual control is not possible when the PLC is in Program Mode.

� The only time the CPU will allow a loop mode change is during PLC run
Mode operation. As such, the CPU records the modes of all 16 loops as
the desired mode of operation. If power failure and restoration occurs
during PLC Run Mode, the CPU returns all loops to their prior mode
(which could be Manual, Auto, or Cascade).

� On a Program-to-Run mode transition, the CPU forces each loop to
return to its prior mode recorded during the last PLC Run Mode.

� You can add and configure new loops only when the PLC is in Program
Mode. New loops automatically begin in Manual Mode.

In normal conditions the mode of a loop is determined by the request to V+00, bits 0,
1, and 2. However, some conditions exist which will prevent a requested mode
change from occurring:

� A loop that is not set independent of PLC mode cannot change modes
when the PLC is in Program mode.

� A major loop of a cascaded pair of loops cannot go from Manual to Auto
until its minor loop is in Cascade mode.

In other situations, the PID loop controller will automatically change the mode of the
loop to ensure safe operation:

� A loop which develops an error condition automatically goes to Manual.
� If the minor loop of a cascaded pair of loops leaves Cascade Mode for

any reason, its major loop automatically goes to Manual Mode.

Operator Panel
Control of
PID Modes

PLC Modes’ Effect
on Loop Modes

Loop Mode
Override

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–26
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

In process control, the word “transfer” has a particular meaning. A loop transfer
occurs when we change its mode of operation, as shown below. When we change
loop modes, what we are really doing is causing a transfer of control of some loop
parameter from one source to another. For example, when a loop changes from
Manual Mode to Automatic Mode, control of the output changes from the operator to
the loop controller. When a loop changes from Automatic Mode to Cascade Mode,
control of the SP changes from its original source in Auto Mode to the output of
another loop (the major loop).

Manual Automatic CascadeMode change

Transfer

Operator
generates
loop output

PID
calculates
loop output

SP
generated

local to loop

SP
generated

remotely by
major loop

Transfer

Mode change

The basic problem of loop transfers is the two different sources of the loop parameter
being transferred will have different numerical values. This causes the PID
calculation to generate an undesirable step change, or “bump” on the control output,
thereby upsetting the loop to some degree. The “bumpless transfer” feature
arbitrarily forces one parameter equal to another at the moment of loop mode
change, so the transfer is smooth (no bump on the control output).

The bumpless transfer feature of the
DL250–1 and DL260 loop controller is
available in two types: Bumpless I, and
Bumpless II. Use DirectSOFT32’s PID
Setup dialog box to select transfer type.
Or, you can use bit 3 of PID Mode 1 V+00
setting as shown.

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Bumpless Transfer I / II select

The characteristics of Bumpless I and II transfer types are listed in the chart below.
Note that their operation also depends on which PID algorithm you are using, the
position or velocity form of the PID equation. Note that you must use Bumpless
Transfer type I when using the velocity form of the PID algorithm.

Transfer
Type

Transfer
Select Bit

PID Algorithm Manual-to-Auto
Transfer Action

Auto-to-Cascade
Transfer Action

Bumpless
Transfer I

0 Position Forces Bias = Control Output
Forces SP = PV

Forces Major Loop Output =
Minor Loop PV

Velocity Forces SP = PV Forces Major Loop Output =
Minor Loop PV

Bumpless
Transfer II

1 Position Forces Bias = Control Output none
Transfer II

Velocity none none

Bumpless
Transfers

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–27
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

PID Loop Data Configuration

In choosing the Process Variable range and resolution, a related choice to make is
the data format of the three main loop variables: SP, PV, and Control Output (the
Integrator sum in V+04 also uses this data format). The four data formats available
are 12 or 15 bit (right justified), signed or unsigned (MSB is sign bit in bipolar
formats). The four binary combinations of bits 0 and 1 of PID Mode 2 word V+01
choose the format. The DirectSOFT32 PID Setup dialog sets these bits
automatically when you select the data format from the menu.

Process Variable V+03

Loop
Calculation�+

–

Control Output V+05Setpoint V+02

013456789101112131415 2Bit

12 bit unipolar

12 bit bipolar

15 bit bipolar

15 bit unipolar

0 to 0FFF (0 to 4095)

0 to 0FFF, 8FFF to 8001
(0 to 4095, –4095 to –1)

0 to 32767

0 to 7FFF, FFF to 8001
(0 to 32767, –32767 to –1)

Data formats

013456789101112131415 2Bit

PID Mode 2 Setting V+01

0 0

0 1

1 0

1 1

Select data
format using
bits 0 and 1.

= sign bit

LSB

The data format is a very powerful setting, because it determines the numerical
interface between the PID loop and the PV sensor, and the Control Output device.
The Setpoint must also be in the same data format. Normally, the data format is
chosen during the initial loop configuration and is not changed again.

Choosing the data format involves deciding whether to use unipolar or bipolar
numbers. Most applications such as temperature control will use only positive
numbers, and therefore need unipolar format. Usually it is the Control Output which
determines bipolar/unipolar selection. For example, velocity control may include
control of forward and reverse directions. At a zero velocity setpoint the desired
control output is also zero. In that case, bipolar format must be used.

Unipolar Bipolar

Loop Parameter
Data Formats

Choosing Unipolar
or Bipolar Format

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–28
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

In many batch process applications, sensors or actuators interface to DL205 analog
modules using 4–20 mA signals. This signal type has a built-in 20% offset, because
the zero-point is a 4 mA instead of 0 mA. However, remember the analog modules
convert the signals into data and remove the offset at the same time. For example, a
4–20 mA signal is often converted to 0000 – 0FFF hex, or 0 to 4095 decimal. In this
case, all you need to do is choose 12-bit unipolar data format, and make sure the
ladder program copies the data appropriately between the loop table and the analog
modules.

� PV Offset – In the event you have a PV value with a 20% offset, convert
it to zero–offset by subtracting 20% of the top of its range, and multiply
by1.25.

� Control Output – In the event the Control Output is going to a device
with 20% offset, all you need to do is have the ladder program write a
value equivalent to the offset to the integrator register (V+04), before
transitioning from Manual to Auto mode. The loop will then see this
offset as a part of the process, taking care of it for you automatically.

The Setpoint in loop table location V+02 represents the desired value of the process
variable. After selecting the data format for these variables, you can set limits on the
range of SP values which the loop calculation will use. Many loops have two or more
possible sources writing the Setpoint at various times, and the limits you set will help
safeguard the process from the effects of a bad SP value.
In the figure below, the SP has a selectable limit function, enabled by PID Mode 2
Setting V+01 word, bit 3. If enabled, then locations V+26 and V+27 determine the
lower and upper SP limits, respectively. The loop calculation applies this limit
internally, so it is always possible to write any value to V+02.

Process Variable (PV)

Loop
Calculation�+

–

Control
Output

PID Mode 2 Setting V+01

013456789101112131415 2Bit

Setpoint

No
Limits

With
Limits

0

1

SP Limits enable

Loop Table

V+26 SP Lower LimitXXXX

V+27 SP Upper LimitXXXX

The loop calculation checks these SP upper and lower limits before each
calculation. This means ladder logic can change the limit settings while a process is
in progress, allowing you to keep a tighter guard band on the SP input value.

Handling
Data Offsets

Setpoint (SP)
Limits

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–29
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

You may recall there are generally several possible data sources for the SP value.
The PID loop controller has the built-in ability to select between two sources
according to the current loop mode. Refer to the figure below. A loop reads its
setpoint from table location V+02 in Auto or Manual modes. If you plan to use
Cascade Mode for the loop at any time, then you must program its loop parameter
table with a remote setpoint pointer.
The Remote SP pointer resides in location V+32 in the loop table. For loops that will
be cascaded (made a minor loop), you will need to program this location with the
address of the major loop’s Control Output address. Find the starting location of the
major loop’s parameter table and add offset +05 to it.

Process Variable

�+
–

Setpoint

Cascade

Auto/Manual

Control Output V+05

Normal SP V+02

Loop
Calculation

Control Output

Loop
Calculation

Cascaded loop
Another loop

Loop Table

V+32 Remote SP PointerXXXX

(minor loop)
(major loop)

A DirectSOFT32 Loop Setup dialog box will allow you to enter the Remote SP
pointer if you know the address. Otherwise, you can enter it with a HPP or program it
through ladder logic using the LDA instruction.

The process variable input to each loop is the value the loop is ultimately trying to
control, to make it equal to the setpoint and follow setpoint changes as quickly as
possible. Most sensors for process variables have a primarily linear response curve.
Most temperature sensors are mostly linear across their sensing range. However,
flow sensing using an orifice plate technique gives a signal representing
(approximately) the square of the flow. Therefore, a square-root extract function is
necessary before using the signal in a linear control system (such as PID).
Some flow transducers are available which will do the square-root extract, but they
add cost to the sensor package. The PID loop PV input has a selectable square-root
extract function, pictured below. You can select between normal (linear) PV data,
and data needing a square-root extract by using PID Mode setting V+00 word, bit 6.

Loop
Calculation�+

–

Control Output

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Linear/Square-root PV select

0

1

Linear PV

Square-
root PV

Setpoint

Process Variable

Remote Setpoint
(SP) Location

Process Variable
(PV) Configuration

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–30
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

IMPORTANT: The scaling of the SP must be adjusted if you use PV square-root
extract, because the loop drives the output so the square root of the PV is equal to
the PV input. Divide the desired SP value by the square root of the analog span, and
use the result in the V+02 location for the SP. This does reduce the resolution of the
SP, but most flow control loops do not require a lot of precision (the recipient of the
flow is integrating the errors). Use one of the following formulas for the SP according
to the data format you are using. It’s a good idea to set the SP upper limit to the top of
the allowed range.

Data Format SP Scaling SP Range PV range

12-bit SP = PV input / 64 0 – 64 0 – 4095

15-bit SP = PV input / 181 0 – 181 0 – 32767

16-bit SP = PV input / 256 0 – 256 0 – 65535

The Control Output is the numerical result of the PID calculation. All of the other
parameter choices ultimately influence the value of a loop’s Control Output for each
calculation. Some final processing selections dedicated to the Control Output are
available, shown below. At the far right of the figure, the final output may be restricted
by lower and upper limits that you program. The values for V+30 and V+31 may be
set once using DirectSOFT32’s PID Setup dialog box.
The Control Output lower and upper limits can help guard against commanding an
excessive correction to an error when a loop fault occurs (such as PV sensor signal
loss). However, do not use these limits to restrict mechanical motion that might
otherwise damage a machine (use hard-wired limit switches instead).

Process Variable

Loop
Calculation�+

–

Control OutputSetpoint

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Normal / Inverted Output Select

0

1

Normal Output

Inverted Output

With
Limits

Loop Table

V+30 Control Output Lower LimitXXXX

V+31 Control Output Upper LimitXXXX

The other available selection is the normal/inverted output selection (called
“forward/reverse” in DirectSOFT32). Use bit 4 of the PID Mode 1 Setting V+00 word
to configure the output. Independently of unipolar or bipolar format, a normal output
goes upward on positive errors and downward on negative errors (where
Error=(SP–PV)). The inverted output reverses the direction of the output change.
The normal/inverted output selection is used to configure
direct-acting/reverse-acting loops. This selection is ultimately determined by the
direction of the response of the process variable to a change in the control output in a
particular direction. Refer to the PID Algorithms section for more on direct-acting and
reverse-acting loops.

Control Output
Configuration

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–31
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The Error term is internal to the CPUs PID loop controller, and is generated again in
each PID calculation. Although its data is not directly accessible, you can easily
calculate it by subtracting: Error = (SP–PV). If the PV square-root extract is enabled,
then Error = (SP – (sqrt(PV)). In any case, the size of the error and algebraic sign
determine the next change of the control output for each PID calculation.
Now we will superimpose some “special effects” on to the error term as described.
Refer to the diagram below. Bit 7 of the PID Mode Setting 1 V+00 word lets you select
a linear or squared error term, and bit 8 enables or disables the error deadband.

NOTE: When first configuring a loop, it’s best to use the standard error term. After
the loop is tuned, then you will be able to tell if these functions will enhance control.

Process Variable

Loop
Calculation�

Error
Term

+
–

Setpoint

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Linear/Squared Error select

0

1

Error

Error
squared

0

1

Error

Error with
Deadband

Error Deadband select

Loop Table

V+23 Error DeadbandXXXX

Error Squared – When selected, the squared error function simply squares the
error term (but preserves the original algebraic sign), which is used in the
calculation. This affects the Control Output by diminishing its response to smaller
error values, but maintaining its response to larger errors. Some situations in which
the error squared term might be useful:

� Noisy PV signal – using a squared error term can reduce the effect of
low-frequency electrical noise on the PV, which will make the control
system jittery. A squared error maintains the response to larger errors.

� Non-linear process – some processes (such as chemical pH control)
require non-linear controllers for best results. Another application is
surge tank control, where the Control Output signal must be smooth.

Error Deadband – When selected, the error deadband function takes a range of
small error values near zero, and simply substitutes zero as the value of the error. If
the error is larger than the deadband range, then the error value is used normally.
Loop parameter location V+23 must be programmed with a desired deadband
amount. Units are the same as the SP and PV units (0 to FFF in 12-bit mode, and 0 to
7FFF in 15-bit mode). The PID loop controller automatically applies the deadband
symmetrically about the zero-error point.

Error Term
Configuration

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–32
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

PID Algorithms
The Proportional–Integral–Derivative (PID) algorithm is widely used in process
control. The PID method of control adapts well to electronic solutions, whether
implemented in analog or digital (CPU) components. The DL250–1 and DL260
CPUs implement the PID equations digitally by solving the basic equations in
software. I/O modules serve only to convert electronic signals into digital form (or
vise-versa).
The CPUs features two types of PID controls: “position” and “velocity”. These terms
usually refer to motion control situations, but here we use them in a different sense:

� PID Position Algorithm – The control output is calculated so it responds
to the displacement (position) of the PV from the SP (error term).

� PID Velocity Algorithm – The control output is calculated to represent
the rate of change (velocity) for the PV to become equal to the SP.

The vast majority of applications will use the position form of the PID equation. If you
are not sure of which algorithm to use, try the Position Algorithm first. Use
DirectSOFT32’s PID View Setup dialog box to select the desired algorithm. Or, use
bit 5 of PID Mode 1 Setting V+00 word as shown below to select the desired
algorithm.

Process Variable

�+
–

Setpoint

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Position / Velocity select

Loop Calculation
0

1

Position Algorithm
Control Output

Velocity Algorithm

Error

NOTE: The selection of a PID algorithm is very fundamental to control loop
operation, and is normally never changed after the initial configuration of a loop.

The Position Algorithm causes the PID equation to calculate the Control Output Mn:

�Mn = Kc * en + Ki * ei + Kr * (en – en–1) + Mo
i=1

n

In the formula above, the sum of the integral terms and the initial output are
combined into the “Bias” term, Mx. Using the bias term, we define formulas for the
Bias and Control Output as a function of sampling time:

Mn = Kc * en + Kr * (en – en–1) + Mxn.....Output for sampling time “n”

Mxo =Mo

Mxn =Ki * en + Mxn–1

Mn = Ki * �ei + Mo
i=1

n

Position Algorithm

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–33
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The position algorithm variables and related variables are:
Ts = Sample rate
Kc = Proportional gain
Ki = Kc * (Ts/Ti) coefficient of integral term
Kr = Kc * (Td/Ts) coefficient of derivative term
Ti = Reset time (integral time)
Td = Rate time (derivative time)
SPn = Set Point for sampling time “n” (SP value)
PVn = Process variable for sampling time “n” (PV)
en = SPn – PVn = Error term for sampling time “n”
M0 = Control Output for sampling time “0”
Mn = Control Output for sampling time “n”

Analysis of these equations will be found in most good text books on process control.
At a glance, we can isolate the parts of the PID Position Algorithm which correspond
to the P, I, and D terms, and the Bias as shown below.

�Mn = Kc * en + Ki * ei + Kr * (en – en–1) + Mo
i=1

n

Control
Output

Proportional
Term

Initial
Output

Integral
Term

Derivative
Term

Bias
Term

The initial output is the output value assumed from Manual mode control when the
loop transitioned to Auto Mode. The sum of the initial output and the integral term is
the bias term, which holds the “position” of the output. Accordingly, the Velocity
Algorithm discussed next does not have a bias component.

The Velocity Algorithm form of the PID equation can be obtained by transforming
Position Algorithm formula with subtraction of the equation of (n–1)th degree from
the equation of nth degree.
The velocity algorithm variables and related variables are:

Ts = Sample rate
Kc = Proportional gain
Ki = Kc * (Ts/Ti) = coefficient of integral term
Kr = Kc * (Td/Ts) = coefficient of derivative term
Ti = Reset time (integral time)
Td = Rate time (derivative time)
SPn = Set Point for sampling time “n” (SP value)
PVn = Process variable for sampling time “n” (PV)
en = SPn – PVn = Error term for sampling time “n”
Mn = Control Output for sampling time “n”

The resulting equations for the Velocity Algorithm form of the PID equation are:

�Mn = Kc * (en – en–1) + Ki * en + Kr * (en – 2*en–1 +en–2)

�Mn =Mn – Mn–1

Velocity Algorithm

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–34
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The gain of a process determines, in part, how it must be controlled. The process
shown in the diagram below has a positive gain, which we call “direct-acting”. This
means that when the control output increases, the process variable also eventually
increases. Of course, a true process is usually a complex transfer function that
includes time delays. Here, we are only interested in the direction of change of the
process variable in response to a control output change.
Most process loops will be direct-acting, such as a temperature loop. An increase in
the heat applied increases the PV (temperature). Accordingly, direct-acting loops
are sometimes called heating loops.

Process Variable

Loop
Calculation�+

–

Control OutputSetpoint

Process

+

Direct-Acting Loop

A “reverse-acting” loop is one in which the process has a negative gain, as shown
below. An increase in the control output results in a decrease in the PV. This is
commonly found in refrigeration controls, where an increase in the cooling input
causes a decrease in the PV (temperature). Accordingly, reverse-acting loops are
sometimes called cooling loops.

Process Variable

Loop
Calculation�+

–

Control OutputSetpoint

Process

–

Reverse-Acting Loop

It is crucial to know whether a particular loop is direct or reverse-acting!
Unless you are controlling temperature, there is no obvious answer. In a flow control
loop, a valve positioning circuit can be configured and wired reverse-acting as easily
as direct-acting. One easy way to find out is to run the loop in Manual Mode, where
you must manually generate control output values. Observe whether the PV goes up
or down in response to a step increase in the control output.
To run a loop in Auto or Cascade Mode, the control output must be correctly
programmed (refer to the previous section on Control Output Configuration). Use
“normal output” for direct-acting loops, and “inverted output” for reverse-acting
loops. To compensate for a reverse-acting loop, the PID controller must know to
invert the control output. If you have a choice, configure and wire the loop to be
direct-acting. This will make it easier to view and interpret loop data during the loop
tuning process.

Direct-Acting and
Reverse-Acting
Loops

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–35
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

You may recall the introduction of the position and velocity forms of the PID loop
equations. The equations basically show the three components of the PID
calculation. The following figure shows a schematic form of the PID calculation, in
which the control output is the sum of the proportional, integral and derivative terms.
On each calculation of the loop, each term receives the same error signal value.

Process Variable

�
Error Term

+
–

Control OutputSetpoint
�+

P

I

D

Loop Calculation

+

+

The role of the P, I, and D terms in the control task are as follows:
� Proportional – the proportional term simply responds proportionally to

the current size of the error. This loop controller calculates a
proportional term value for each PID calculation. When the error is zero,
the proportional term is also zero.

� Integral – the integrator (or reset) term integrates (sums) the error
values. Starting from the first PID calculation after entering Auto Mode,
the integrator keeps a running total of the error values. For the position
form of the PID equation, when the loop reaches equilibrium and there
is no error, the running total represents the constant output required to
hold the current position of the PV.

� Derivative – the derivative (or rate) term responds to change in the
current error value from the error used in the previous PID calculation.
Its job is to anticipate the probable growth of the error and generate a
contribution to the output in advance.

The P, I, and D terms work together as a team. To do that effectively, they will need
some additional instructions from us. The figure below shows the P, I, and D terms
contain programmable gain values kp, ki, and kd respectively. The values reside in
the loop table in the locations shown. The goal of the loop tuning process (covered
later) is to derive gain values that result in good overall loop performance.

NOTE: The proportional gain is also simply called “gain”, in PID loop terminology.

Process Variable

�
Error Term

+
–

Control OutputSetpoint
�+

P

I

D

Loop Calculation

+

+

kp

ki

kd

Loop Table

V+10 Proportional gainXX.XX

V+11 Integral gainXX.XX

V+12 Derivative gainXX.XX

P-I-D Loop Terms

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–36
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The P, I and D gains are 4-digit BCD
numbers with values from 0000 to 9999.
They contain an implied decimal point in
the middle, so the values are actually
00.00 to 99.99. Some gain values have
units – Integral gain may be in units of
seconds or minutes, by programming the
bit shown. Derivative gain is in seconds.

�+

P

I

D

+

+

kp

ki

kd

V+10 P gainXX.XX

V+11 I gainXX.XX

V+12 D gainXX.XX

–

0=sec, 1=min.

sec. PID Mode 2 Setting V+01

013456789101112131415 2Bit

Units select

In DirectSOFT32’s trend view, you can program the gains values and units in real
time while the loop is running. This is typically done only during the loop tuning
process.
Proportional Gain – This is the most basic gain of the three. Values range from
0000 to 9999, but they are used internally as xx.xx. An entry of “0000” effectively
removes the proportional term from the PID equation. This accommodates
applications which need integral-only loops.
Integral Gain – Values range from 0001 to 9998, but they are used internally as
xx.xx. An entry of “0000” or “9999”causes the integral gain to be “�”, effectively
removing the integrator term from the PID equation. This accommodates
applications which need proportional-only loops. The units of integral gain may be
either seconds or minutes, as shown above.
Derivative Gain – Values range from 0001 to 9999, but they are used internally as
xx.xx. An entry of “0000” allows removal of the derivative term from the PID equation
(a common practice). This accommodates applications which need proportional
and/or integral-only loops. The derivative term has an optional gain limiting feature,
discussed in the next section.

NOTE: It is very important to know how to increase and decrease the gains. The
proportional and derivative gains are as one might expect... smaller numbers
produce less gains and larger numbers produce more gain. However, the integral
term has a reciprocal gain(1/Ts), so smaller numbers produce more gain and larger
numbers produce less gain. This is very important to know during loop tuning.

Each of the P, I, and D gains allows a setting to eliminate that term from the PID
equation. Many applications actually work best by using a subset of PID control. The
figure below shows the various combinations of PID control offered on the DL250–1
and DL260 CPUs. We do not recommend using any other combination of control,
because most of them are inherently unstable.

�+

P

I

D +

+
�+

P

I
+

�P
+

�I
+

Using a Subset of
PID Control

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–37
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The derivative term is unique in that it has an optional gain-limiting feature. This is
provided because the derivative term reacts badly to PV signal noise or other causes
of sudden PV fluctuations. The function of the gain-limiting is shown in the diagram
below. Use bit 9 of PID Mode 1 Setting V+00 word to enable the gain limit.

Process Variable

�
Error Term

+
–

Control
OutputSetpoint

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Derivative gain limit select

�+

P

I

D

Loop Calculation

+

+

Derivative

Derivative,
gain-limited

0

1

Integral

Proportional

Loop Table

V+25 Derivative Gain Limit00XX

The derivative gain limit in location V+25 must have a value between 0 and 20, in
BCD format. This setting is operational only when the enable bit = 1.
The gain limit can be particularly useful during loop tuning. Most loops can tolerate
only a little derivative gain without going into wild oscillations.

In the widely-used position form of the PID equation, an important component of the
control output value is the bias term shown below. Its location in the loop table is in
V+04. the loop controller writes a new bias term after each loop calculation.

�Mn = Kc * en + Ki * ei + Kr * (en – en–1) + Mo
i=1

n

Control
Output

Proportional
Term

Initial
Output

Integral
Term

Derivative
Term

Bias TermV+04 Bias termXXXX

If we cause the error (en) to go to zero for two or more sample periods, the
proportional and derivative terms cancel. The bias term is the sum of the integral
term and the initial output (Mo). It represents the steady, constant part of the control
output value, and is similar to the DC component of a complex signal waveform.
The bias term value establishes a “working region” for the control output. When the
error fluctuates around its zero point, the output fluctuates around the bias value.
This concept is very important, because it shows us why the integrator term must
respond more slowly to errors than either the proportional or derivative terms.

Derivative Gain
Limiting

Bias Term

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–38
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The term “reset windup” refers to an undesirable characteristic of integrator
behavior which occurs naturally under certain conditions. Refer to the figure below.
Suppose the PV signal becomes disconnected, and the PV value goes to zero.
While this is a serious loop fault, it is made worse by reset windup. Notice the bias
(reset) term keeps integrating normally during the PV disconnect, until its upper limit
is reached. When the PV signal returns, the bias value is saturated (windup) and
takes a long time to return to normal. The loop output consequently has an extended
recovery time. Until recovery, the output level is wrong and causes further problems.

PV

Output

0

Bias

Reset windup Freeze bias enabled

Recovery time Recovery time

PV loss PV loss

In the second PV signal loss episode in the figure, the freeze bias feature is enabled.
It causes the bias value to freeze when the control output goes out of bounds. Much
of the reset windup is thus avoided, and the output recovery time is much less.

For most applications, the freeze bias
feature will work with the loop as
described above. You may enable the
feature using the DirectSOFT32 PID View
setup dialog, or set bit 10 of PID Mode 1
Setting word as shown to the right.

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Bias freeze
select

NOTE: The bias freeze feature stops the bias term from changing when the control
output reaches the end of the data range. If you have set limits on the control output
other than the range (i.e, 0–4095 for a unipolar/12bit loop), the bias term still uses the
end of range for the stopping point and bias freeze will not work.

In the feedforward method discussed later in this chapter, ladder logic writes directly
to the bias term value. However, there is no conflict with the freeze bias feature,
because bias term writes due to feedforward are relatively infrequent when in use.

Bias Freeze

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–39
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Loop Tuning Procedure
This is perhaps the most important step in closed-loop process control. The goal of a
loop tuning procedure is to adjust the loop gains so the loop has optimal
performance in dynamic conditions. The quality of a loop’s performance may
generally be judged by how well the PV follows the SP after a SP step change.
Auto Tuning versus Manual Tuning – you may change the PID gain values directly
(manual tuning), or you can have the PID processing engine in the CPU
automatically calculate the gains (auto tuning). Most experienced process
engineers will have a favorite method, and the CPU will accommodate either
preference. The use of the auto tuning can eliminate much of the trial-and-error of
the manual tuning approach, especially if you do not have a lot of loop tuning
experience. However, note that performing the auto tuning procedure will get the
gains close to optimal values, but additional manual tuning changes can take the
gain values to their optimal values.
Improper loop parameters will result if your PV fluctuates rapidly during auto
tuning. The built–in PV analog filter (see page 8–46) or ladder logic PV filter
(see example on page 8–48) must be used during auto tuning to prevent noise
from giving a false indication of loop characteristics to the tuning algorithm.
Once the loop(s) are properly tuned, the PV filter can be disabled.

WARNING: Only authorized personnel fully familiar with all aspects of the process
should make changes that affect the loop tuning constants. Using the loop auto tune
procedures will affect the process, including inducing large changes in the control
output value. Make sure you thoroughly consider the impact of any changes to
minimize the risk of injury to personnel or damage to equipment. The auto tune in the
DL250–1 and DL260 is not intended to perform as a replacement for your process
knowledge.

Whether you use manual or auto tuning, it is very important to verify basic
characteristics of a newly-installed process before attempting to tune it. With the
loop in Manual Mode, verify the following items for each new loop.

� Setpoint – verify the source which is to generate the setpoint can do so.
You can put the PLC in Run Mode, but leave the loop in Manual Mode.
Then monitor the loop table location V+02 to see the SP value(s). The
ramp/soak generator (if you are using it) should be tested now.

� Process Variable – verify the PV value is an accurate measurement,
and the PV data arriving in the loop table location V+03 is correct. If the
PV signal is very noisy, filter the input either through hardware (RC
low-pass filter), or using a digital S/W filter.

� Control Output – if it is safe to do so, manually change the output a
small amount (perhaps 10%) and observe its affect on the process
variable. Verify the process is direct-acting or reverse acting, and check
the setting for the control output (inverted or non-inverted). Make sure
the control output upper and lower limits are not equal to each other.

� Sample Rate – while operating open-loop, this is a good time to find the
ideal sample rate (procedure give earlier in this chapter). However, if
you are going to use auto tuning, note the auto tuning procedure will
automatically calculate the sample rate in addition to the PID gains.

Open-Loop Test

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–40
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The discussion below covers the manual tuning procedure. If you want to perform
only auto tuning, please skip this next section and proceed directly to the section on
auto tuning.

Now comes the exciting moment when we actually close the loop (go to Auto Mode)
for the first time. Use the following checklist before switching to Auto mode:

� Monitor the loop parameters with a loop trending instrument. We
recommend using the PID view feature of DirectSOFT32.

NOTE: We recommend using the PID trend view setup menu to select the vertical
scale feature to manual, for both SP/PV area and Bias/Control Output areas. The
auto scaling feature will otherwise change the vertical scale on the process
parameters and add confusion to the loop tuning process.

� Adjust the gains so the Proportional Gain = 10, Integrator Gain = 9999,
and Derivative Gain =0000. This disables the integrator and derivative
terms, and provides a little proportional gain.

� Check the bias term value in the loop parameter table (V+04). If it is not
zero, then write it to zero using DirectSOFT32 or HPP, etc.

Now we can transition the loop to Auto Mode. Check the mode monitoring bits to
verify its true mode. If the loop will not stay in Auto Mode, check the troubleshooting
tips at the end of this chapter.

CAUTION: If the PV and Control Output values begin to oscillate, reduce the gain
values immediately. If the loop does not stabilize immediately, then transfer the loop
back to Manual Mode and manually write a safe value to the control output. During
the loop tuning procedure, always be near the Emergency Stop switch which
controls power to the loop actuator in case a shutdown is necessary.

� At this point, the SP should = PV because of the bumpless transfer
feature. Increase the SP a little, in order to develop an error value. With
only the proportional gain active and the bias term=0, we can easily
check the control output value:

Control Output = (SP – PV) x proportional gain

� If the control output value changed, the loop should be getting more
energy from the actuator, heater, or other device. Soon the PV should
move in the direction of the SP. If the PV does not change, then
increase the proportional gain until it moves slightly.

� Now, add a small amount of integral gain. Remember that large
numbers are small integrator gains and small numbers are large
integrator gains! After this step, the PV should = SP, or be very close.

Until this point we have only used proportional and integrator gains. Now we can
“bump the process” (change the SP by 10%), and adjust the gains so the PV has an
optimal response. Refer to the figure below. Adjust the gains according to what you
see on the PID trend view. The critically- damped response shown gives the fastest
PV response without oscillating.

Manual Tuning
Procedure

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–41
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

� Over-damped response – the gains are too small, so gradually increase
them, concentrating on the proportional gain first.

� Under-damped response – the gains are too large. Reduce the integral
gain first, and then the proportional gain if necessary.

� Critically-damped response – this is the the optimal gain setting. You
can verify that this is the best response by increasing the proportional
gain slightly. the loop then should make one or two small oscillations.

PV

10% of
SP range

SP

over-damped response

critically-damped response

under-damped response

Now you may want to add a little derivative gain to further improve the
critically-damped response above. Note the proportional and integral gains will be
very close to their final values at this point. Adding some derivative action will allow
you to increase the proportional gain slightly without causing loop oscillations. The
derivative action tends to tame the proportional response slightly, so adjust these
gains together.

The auto tuning feature in the DL250–1 and DL260 CPU loop controllers run only at
the command of the process control engineer. The auto tuning therefore does not
run continuously during operation (this would be adaptive control). Whenever a
substantial change in loop dynamics occurs (mass of process, size of actuator, etc.),
you will need to repeat the tuning procedure to derive the new gains that are required
for optimal control.

WARNING: Only authorized personnel fully familiar with all aspects of the process
should make changes that affect the loop tuning constants. Using the loop auto
tuning procedures will affect the process, including inducing large changes in the
control output value. Make sure you thoroughly consider the impact of any changes
to minimize the risk of injury to personnel or damage to equipment. The auto tune in
the DL250–1 and DL260 is not intended to perform as a replacement for your
process knowledge.

The loop controller offers both closed-loop and open-loop methods. If you intend to
use the auto tune feature, we recommend you use the open-loop method first. This
will permit you to use the closed-loop method of auto tuning when the loop is
operational (Auto Mode) and cannot be shut down (Manual Mode). The following
sections describe how to use the auto tuning feature, and what occurs in open and
closed-loop auto tuning.

Auto Tuning
Procedure

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–42
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The controls for the auto tuning function use three bits in the PID Mode 2 word V+01,
as shown below. DirectSOFT32 will manipulate these bits automatically when you
use the auto tune feature within DirectSOFT32. Or, you may have ladder logic
access these bits directly for allowing control from another source such as a
dedicated operator interface. The individual control bits let you to start the auto tune
procedure, select PID or PI tuning, and select closed-loop or open-loop tuning. If you
select PI tuning, the auto tune procedure leaves the derivative gain at 0. The Loop
Mode and Alarm Status word V+06 reports the auto tune status as shown. Bit 12 will
be on (1) when during the auto tuning cycle, automatically returning to off (0) when
done.

PID Mode 2 Setting V+01

013456789101112131415 2Bit

Auto Tune Function

Auto Tuning
Controls 0=closed loop,

1=open loop

0=PID tuning,
1=open PI tuning

Start Auto Tune
(0 to 1 transition)

013456789101112131415 2Bit

Loop Mode and Alarm Status V+06

Auto Tune
Active

Auto Tune
Error Auto Tuning

Status

Open-Loop Auto Tuning – During an open-loop auto tuning cycle, the loop
controller operates as shown in the diagram below. Before starting this procedure,
place the loop in Manual mode and ensure the PV and control output values are in
the middle of their ranges (away from the end points).

Process Variable

Loop
Calculation

Manufacturing
Process

Setpoint Value
Control
Output

�
Error Term

+
–

PLC System

Open Loop
Auto Tuning

Step Function

Process Variable

Response

NOTE: In theory, the SP value does not matter in this case, because the loop is not
closed. However, the firmware requires that the SP value be more than 205 counts
away from the PV value before starting the auto tune cycle (205 counts or more
below the SP for forward-acting loops, or 205 counts or more above the SP for
reverse-acting loops).

When auto tuning, the loop controller induces a step change on the output and
simply observes the response of the PV. From the PV response, the auto tune
function calculates the gains and the sample time. It automatically places the results
in the corresponding registers in the loop table.

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–43
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The following timing diagram shows the events which occur in the open-loop auto
tuning cycle. The auto tune function takes control of the control output and induces a
10%-of-span step change. If the PV change which the loop controller observes is
less than 2%, then the step change on the output is increased to 20%-of-span.

Tangent Rr = Slope

Process Wave
SP

PV
(%)

Base Line

Lr
(sec.)

LrRr
(%)

Time (sec)

Output Value
(%)

Step Change �m=10%

PID Cycle

Auto Tune Start Auto Tune End

PID Cycle
Auto Tune Cycle

* When Auto Tune starts, step change output �m=10%
* During Auto Tune, the controller output reached the full scale positive limit.
 Auto Tune stopped and the Auto Tune Error bit in the Alarm word bit turned on.
* When PV change is under 2%, output is changed at 20%.

Open Loop Auto Tune Cycle Wave: Step Response Method

When the loop tuning observations are complete, the loop controller computes Rr
(maximum slope in %/sec.) and Lr (dead time in sec). The auto tune function
computes the gains according to the Ziegler-Nichols equations, shown below:

P = 1.2 * �m/LrRr

I = 2.0 * Lr

D = 0.5 * Lr

PID tuning: PI tuning:

P = 0.9 * �m/LrRr

I = 3.33 * Lr

Sample Rate = 0.056 * Lr Sample Rate = 0.12 * Lr
D = 0

�m = Output step change (10% = 0.1, 20% = 0.2)

We highly recommend using DirectSOFT32 for the auto tuning interface. the
duration of each auto tuning cycle will depend on the mass of our process. A
slowly-changing PV will result in a longer auto tune cycle time. When the auto tuning
is complete, the proportional, integral, and derivative gain values are automatically
updated in loop table locations V+10, V+11, and V+12 respectively. The sample time
in V+07 is also updated automatically. You can test the validity of the values the auto
tuning procedure yields by measuring the closed-loop response of the PV to a step
change in the output. The instructions on how to so this are in the section on the
manual tuning procedure (located prior to this section on auto tuning).

Auto tuning error – if the auto tune error bit (bit 13 of Loop Mode and Alarm status
word V+06) is on, please verify the PV and SP values are within 5% of full scale
difference, as required by the auto tune function. The bit will also turn on if the
closed-loop method is in use, and the output goes to the limits of the range.

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–44
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Closed-Loop Auto Tuning – During a closed-loop auto tuning cycle, the loop
controller operates as shown in the diagram below.

Process Variable

Loop
Calculation

Manufacturing
Process

Setpoint Value
Control
Output

�
Error Term

+
–

PLC System

Closed Loop
Auto Tuning

Limit cycle wave

Process Variable

Response

When auto tuning, the loop controller imposes a square wave on the output. Each
transition of the output occurs when the PV value crosses over (or under) the SP
value. Therefore, the frequency of the limit cycle is roughly proportional to the mass
of the process. From the PV response, the auto tune function calculates the gains
and the sample time. It automatically places the results in the corresponding
registers in the loop table.
The following timing diagram shows the events which occur in the closed-loop auto
tuning cycle. The auto tune function examines the direction of the offset of the PV
from the SP. The auto tune function then takes control of the control output and
induces a full-span step change in the opposite direction. Each time the sign of the
error (SP – PV) changes, the output changes full-span in the opposite direction. This
procedes through three full cycles.

SP
PV

Output Value

PID Cycle

Auto Tune Start Auto Tune End

PID Cycle
Auto Tune Cycle

Closed Loop Auto Tune Cycle Wave: Limit Cycle Method
Xo

M

To

*Mmax = Output Value upper limit setting Mmin = Output Value lower limit setting.
* This example is direct–acting. When set at reverse–acting, output is inverted.

Process Wave

Calculation of
PID parameter

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–45
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

When the loop tuning observations are complete, the loop controller computes To
(bump period) and Xo (amplitude of the PV). Then it uses these values to compute
Kpc (sensitive limit) and Tpc (period limit). From these values, the loop controller
auto tune function computes the PID gains and the sample rate according to the
Ziegler-Nichols equations shown below:

P = 0.45 * Kpc

I = 0.60 * Tpc

D = 0.10 * Tpc

PID tuning: PI tuning:

P = 0.30 *Kpc

I = 1.00 * Tpc

Sample Rate = 0.014 * Tpc Sample Rate = 0.03 * Tpc
D = 0

Kpc = 4M / (π * Xo) Tpc =To

M = amplitude of output

Auto tuning error – if the auto tune error bit (bit 13 of Loop Mode and Alarm status
word V+06) is on, please verify the PV and SP values are within 5% of full scale
difference, as required by the auto tune function. The bit will also turn on if the
open-loop method is in use, and the output goes to the limits of the range.

In tuning cascaded loops, we will need to de-couple the cascade relationship and
tune the loops individually, using one of the loop tuning procedures previously
covered.

1. If you are not using auto tuning, then find the loop sample rate for the
minor loop, using the method discussed earlier in this chapter. Then set
the sample rate of the major loop slower than the minor loop by a factor
of 10. Use this as a starting point.

2. Tune the minor loop first. Leave the major loop in Manual Mode, and
you will need to generate SP changes for the minor loop manually as
described in the loop tuning procedure.

3. Verify the minor loop gives a critically-damped response to a 10% SP
change while in Auto Mode. Then we are finished tuning the minor loop.

4. In this step, you will need to get the minor loop in Cascade Mode, and
then the Major loop in Auto Mode. We will be tuning the major loop with
the minor loop treated as a series component its overall process.
Therefore, do not go back and tune the minor loop again while tuning
the major loop.

5. Tune the major loop, following the standard loop tuning procedure in
this section. The response of the major loop PV is actually the overall
response of the cascaded loops together.

Tuning
Cascaded Loops

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–46
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

PV Analog Filter

As you can see from the timing diagrams on the previous pages, the zero-crossing of
the SP and PV difference is important. Obviously, a noisy PV signal can create extra
zero-crossings and give a false indication of loop characteristics to the loop
controller. The DL250–1 and DL260 provide a selectable first-order low-pass PV
input filter specifically for you to use during auto tuning, using the closed-loop
method. Shown in the figure below, we strongly recommend the use of this filter
during auto tuning. You may disable the filter after auto tuning is complete, or
continue to use it if the PV input signal is noisy.

Loop
Calculation�+

–

Control Output

PID Mode 2 Setting V+01

013456789101112131415 2Bit

PV filter
enable/disable

0

1

Unfiltered
PV

Filtered
PV

�����
��

Process Variable

Loop Table

V+24 FIlter constantXXXX

Bit 2 of PID Mode 2 Setting provides the enable/disable control for the low-pass PV
filter (0=disable, 1=enable). The roll-off frequency of the single-pole low-pass filter is
controlled by using register V+24 in the loop parameter table, the filter constant. The
data format of the filter constant value is BCD, with an implied decimal point 00X.X,
as follows:

� The filter constant has a range of 000.1 to 001.0.
� A setting of 000.0 or 001.1 to 999.9 essentially disables the filter.
� Values close to 001.0 result in higher roll-off frequencies, while values

closer to 000.1 result in lower roll-off frequencies.

We highly recommend using DirectSOFT32 for the auto tuning interface. The
duration of each auto tuning cycle will depend on the mass of our process. A
slowly-changing PV will result in a longer auto tune cycle time.
When the auto tuning is complete, the proportional, integral, and derivative gain
values are automatically updated in loop table locations V+10, V+11, and V+12
respectively. The sample time in V+07 is also updated automatically. You can test
the validity of the values the auto tuning procedure yields by measuring the
closed-loop response of the PV to a step change in the output. The instructions on
how to so this are in the section on the manual tuning procedure.

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–47
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The built-in filter uses the following algorithm:
yi = k (xi – yi–1) + yi–1

yi is the current output of the filter
xi is the current input to the filter
yi–1 is the previous output of the filter
k is the PV Analog Input Filter Factor

The diagrams below show how the auto transfer function (address + 36) and PV
filtering (address + 01, bit 2) interact. The options are:

� Auto transfer directly from an analog I/O module channnel with the filter
enabled or disabled. When this function is used, the analog pointer
method cannot be used to read the module’s channel values.

� Auto–transfer directly from a V–mermory location with the filter enabled
or disabled. When this function is used, either the analog pointer
method or program logic must be used to write a value to the V–memory
location specified.

+�	��*

��/���

+����,�	��-��

-����	�	��*�.(�

�����������		��
����

��������������
�����������
����

3
����

�������4 +����,�	��-��

-�����������4

�����������		��
������
�����������
�����������
���

3
����
+�	��*

��/���

��������
+//�����
�

+�	��*���
����������/���
���*�	����*
�����/����*��
5	����
�����������4

%���

�	����	�
��

��������
+//�����
�

%���

�	����	�
��

PV Auto Transfer
Functions with
Filtering Options

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–48
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

You can build a similar algorithm in ladder logic. Analog inputs can be filtered
effectively using either method. The following programming example describes the
ladder logic you will need. Be sure to change the example memory locations to those
that fit your application.
Filtering can induce a small error in your output because of “rounding.” Because of
the potential rounding error, you should not use zero or full scale as alarm points.
Additionally, the smaller the filter constant the greater the smoothing effect, but the
slower the response time. Be sure a slower response is acceptable in controlling
your process.

LD
V2000

SUBR
V1400

BTOR

SP1

BIN

Loads the analog signal, which is a BCD value
and has been loaded from V-memory location
V2000, into the accumulator. Contact SP1 is
always on.

Converts the BCD value in the accumulator
to binary. This instruction is not needed if the
analog value is originally brought in as a
binary number.

Converts the binary value in the accumulator
to a real number.

Subtracts the real number stored in location
V1400 from the real number in the
accumulator, and stores the result in the
accumulator. V1400 is the designated
workspace in this example.

Multiplies the real number in the
accumulator by 0.2 (the filter factor),
and stores the result in the
accumulator. This is the filtered value.

OUTD
V1400

ADDR
V1400

MULR
R0.2

OUT
V1402

BCD

RTOB

Adds the real number stored in
location V1400 to the real number
filtered value in the accumulator, and
stores the result in the accumulator.

Copies the value in the accumulator
to location V1400.

Converts the real number in the
accumulator to a binary value, and
stores the result in the accumulator.

Converts the binary value in the accumulator
to a BCD number. Note: the BCD instruction
is not needed for PID loop PV (loop PV is a
binary number).

Loads the BCD number filtered value from
the accumulator into location V1402 to use
in your application or PID loop.

Creating an Analog
Filter in Ladder
Logic

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–49
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Feedforward Control
Feedforward control is an enhancement to standard closed-loop control. It is most
useful for diminishing the effects of a quantifiable and predictable loop disturbance
or sudden change in setpoint. Use of this feature is an option available to you on the
DL250–1 and DL260. However, it’s best to implement and tune a loop without
feedforward, and adding it only if better loop performance is still needed. The term
“feed-forward” refers to the control technique involved, shown in the diagram below.
The incoming setpoint value is fed forward around the PID equation, and summed
with the output.

Process Variable

Loop
Calculation�+

–

Control OutputSetpoint
�+

kf
Feedforward path

+

In the previous section on the bias term, we said that “the bias term value establishes
a “working region” or operating point for the control output. When the error fluctuates
around its zero point, the output fluctuates around the bias value.” Now, when there
is a change in setpoint, an error is generated and the output must change to a new
operating point. This also happens if a disturbance introduces a new offset in the
loop. The loop does not really “know its way” to the new operating point... the
integrator (bias) must increment/decrement until the error disappears, and then the
bias has found the new operating point.
Suppose that we are able to know a sudden setpoint change is about to occur
(common in some applications). We can avoid much of the resulting error in the first
place, if we can quickly change the output to the new operating point. If we know
(from previous testing) what the operating point (bias value) will be after the setpoint
change, we can artificially change the output directly (which is feedforward). The
benefits from using feedforward are:

� The SP–PV error is reduced during predictable setpoint changes or loop
offset disturbances.

� Proper use of feedforward will allow us to reduce the integrator gain.
Reducing integrator gain gives us an even more stable control system.

Feedforward is very easy to use in the DL250–1 and DL260 loop controller, as
shown below. The bias term has been made available to the user in a special
read/write location, at PID Parameter Table location V+04.

Process Variable

�
Error Term

+
–

Control OutputSetpoint
�+

P

I

D

Loop Calculation

+

+

kp

ki

kd

V+04

Bias TermXXXX

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–50
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

To change the bias (operating point), ladder logic only has to write the desired value
to V+04. The PID loop calculation first reads the bias value from V+04 and modifies
the value based on the current integrator calculation. Then it writes the result back to
location V+04. This arrangement creates a sort of “transparent” bias term. All you
have to do to implement feed forward control is write the correct value to the bias
term at the right time (the example below shows you how).

NOTE: When writing the bias term, one must be careful to design ladder logic to
write the value only once, at the moment when the new bias operating point is to
occur. If ladder logic writes the bias value on every scan, the loop’s integrator is
effectively disabled.

How do we know when to write to the bias term, and what value to write? Suppose we
have an oven temperature control loop, and we have already tuned the loop for
optimal performance. Refer to the figure below. We notice that when the operator
opens the oven door, the temperature sags a bit while the loop bias adjusts to the
heat loss. Then when the door closes, the temperature rises above the SP until the
loop adjusts again. Feedforward control can help diminish this effect.

PV

Bias

Oven
door

PV sags
PV excess

Closed Open Closed

First, we record the amount of bias change the loop controller generates when the
door opens or closes. Then, we write a ladder program to monitor the position of an
oven door limit switch. When the door opens, our ladder program reads the current
bias value from V+04, adds the desired change amount, and writes it back to V+04.
When the door closes, we duplicate the procedure, but subtracting desired change
amount instead. The following figure shows the results.

PV

Bias

Oven
door

Closed Open Closed

Feed-forward Feed-forward

The step changes in the bias are the result of our two feed-forward writes to the bias
term. We can see the PV variations are greatly reduced. The same technique may
be applied for changes in setpoint.

Feedforward
Example

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–51
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Time-Proportioning Control
The PID loop controller in the DL250–1 and DL260 CPUs generate a smooth control
output signal across a numerical range. The control output value is suitable to drive
an analog output module, which connects to the process. In the process control field,
this is called continuous control, because the output is on (at some level)
continuously.
While continuous control can be smooth and robust, the cost of the loop components
(such as actuators, heater amplifiers) can be expensive. A simpler form of control is
called time-proportioning control. This method uses actuators which are either on or
off (no in-between). Loop components for on/off-based control systems are lower
cost than their continuous control counterparts.
In this section, we will show you how to convert the control output of a loop to
time-proportioning control for the applications that need it. Let’s take a moment to
review how alternately turning a load on and off can control a process. The diagram
below shows a hot-air balloon following a path across some mountains. The desired
path is the setpoint. The balloon pilot turns the burner on and off alternately, which is
his control output. The large mass of air in the balloon effectively averages the effect
of the burner, converting the bursts of heat into a continuous effect: slowly changing
balloon temperature and ultimately the altitude, which is the process variable.

Time-proportioning control approximates continuous control by virtue of its
duty-cycle – the ratio of ON time to OFF time. The following figure shows an example
of how duty cycle approximates a continuous level when it is averaged by a large
process mass.

Desired
Effect

On/Off
Control Off

On

period

If we were to plot the on/off times of the burner in the hot-air balloon, we would
probably see a very similar relationship to its effect on balloon temperature and
altitude.

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–52
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The following ladder segment provides a time proportioned on/off control output. It
converts the continuous output in V2005 to on/off control, using the ouptut coil, Y0.

PV

Loop
Calculation�+

–

V2005SP Time
Proportioning ProcessY0 P

V

continuous on/off

The example program uses two timers to generate on/off control. It makes the
following assumptions, which you can alter to fit your application:

� The loop table starts at V2000, so the control output is at V2005.
� The data format of the control output is 12-bit, unipolar (0 – FFF or

0 – 4,095).
� The on/off control output is Y0.

The control program must “match” the resolution of the output to the resolution of the
time interval. The time interval for one full cycle of the on/off waveform is 10 seconds.

NOTE: Some processes change too fast for time proportioning control. Consider the
speed of your process when you choose this control method. Use continuous control
for processes that change too fast for time proportioning control.

T0
LD
V2005

At the end of the 10 second period, T0 turns on, and
loads the control output value (binary) from the loop table
V+05 location (V2005).

BTOR The BTOR instruction changes the number in the
accumulator to a real number.

BCD Convert the number in the accumulator to BCD format.
This satisfies the timer preset format requirement.

OUT
V1400

Output the result to V1400. In our example, this is the
location of the timer preset for the second timer.

END END coil marks the end of the main program.

T1

OUT
Y0 The N.C. T1 contact, inverts the T1 timer output. The

control output is on at the beginning of the 10-second time
interval. Y0 turns off when T1 times out. The STRNE
contact prevents Y0 from energizing during the one scan
when T0 resets T1. Y0 is the actual control output.

DIVR
R4.095

Dividing the control output by 4.095, converts the
0 – 4095 range to 0 – 1000, which “matchs” the
number of ticks in the 10 second timer range.

RTOB This instruction converts the real number back to
binary. This step prepares the number for conversion
to BCD. There is no real-to-BCD instruction.

T0
TMRF

V1400

The second fast timer also counts in increments of .01
seconds, so its range is variable from 0 to a maximum
of 1000 ticks, or 10 seconds. This timer’s output, T1,
turns off the output coil, Y0, when the preset is reached.

T1

T0
TMRF

K1000

A fast timer (0.01 sec. timebase) establishes the primary
time interval. The constant, K1000, sets the preset at 10
seconds (1,000 ticks). The N.C. enabling contact, T0,
makes the timer self-resetting. T0 is on for one scan
each 10 seconds, when it resets itself and T1.

T0

K0TA1

On/Off Control
Program Example

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–53
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Cascade Control

Cascaded loops are an advanced control technique that is superior to individual loop
control in certain situations. As the name implies, cascade means that one loop is
connected to another loop. In addition to Manual (open loop) and Auto (closed loop)
Modes, the DL250–1 and DL260 also provide Cascaded Mode.

NOTE: Cascaded loops are an advanced process control technique. Therefore we
recommend their use only for experienced process control engineers.

When a manufacturing process is complex and contains a lag time from control input
to process variable output, even the most perfectly tuned single loop around the
process may yield slow and inaccurate control. It may be the actuator operates on
one physical property, which eventually affects the process variable, measured by a
different physical property. Identifying the intermediate variable allows us to divide
the process into two parts as shown in the following figure.

Intermediate
VariableProcess A Process BControl input

Process
Variable (PV)

PROCESS

The principle of cascaded loops is simply that we add another process loop to more
precisely control the intermediate variable! This separates the source of the control
lag into two parts, as well.
The diagram below shows a cascade control system, showing that it is simply one
loop nested inside another. The inside loop is called the minor loop, and the outside
loop is called the major loop. For overall stability, the minor loop must be the fastest
responding loop of the two. We do have to add the additional sensor to measure the
intermediate variable (PV for process A). Notice the setpoint for the minor loop is
automatically generated for us, by using the output of the major loop. Once the
cascaded control is programmed and debugged, we only need to deal with the
original setpoint and process variable at the system level. The cascaded loops
behave as one loop, but with improved performance over the previous single-loop
solution.

�+
–

Setpoint Loop B
Calculation �+

–

Loop A
Calculation

Process A
(secondary)

Process B
(primary)

PV, Process A

PV, Process B

Output B/
Setpoint A

Major
Loop

Minor
Loop

External
Disturbances

External
Disturbances

Output A

One of the benefits to cascade control can be seen by examining its response to
external disturbances. Remember the minor loop is faster acting than the major
loop. Therefore, if a disturbance affects process A in the minor loop, the Loop A PID
calculation can correct the resulting error before the major loop sees the effect.

Introduction

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–54
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

In the use of the term “cascaded loops”, we must make an important distinction. Only
the minor loop will actually be in the Cascade Mode. In normal operation, the major
loop must be in Auto Mode. If you have more than two loops cascaded together, the
outer-most (major) loop must be in Auto Mode during normal operation, and all inner
loops in Cascade Mode.

NOTE: Technically, both major and minor loops are “cascaded” in strict process
control terminology. Unfortunately, we are unable to retain this convention when
controlling loop modes. Remember that all minor loops will be in Cascade Mode, and
only the outer-most (major) loop will be in Auto Mode.

You can cascade together as many loops as necessary on the DL250–1 and DL260,
and you may have multiple groups of cascaded loops. For proper operation on
cascaded loops you must use the same data range (12/15 bit) and polar/bipolar
settings on the major and minor loop.
To prepare a loop for Cascade Mode operation as a minor loop, you must program its
remote Setpoint Pointer in its loop parameter table location V+32, as shown below.
The pointer must be the address of the V+05 location (control output) of the major
loop. In Cascade Mode, the minor loop will ignore the its local SP register (V+02),
and read the major loop’s control output as its SP instead.

Loop Table

V+02 SPXXXX

V+03 PVXXXX

V+32 Remote SP PointerXXXX

V+02 SPXXXX

V+03 PVXXXX

V+05 Control OutputXXXXV+05 Control OutputXXXX

Loop Table

Major Loop (Auto mode) Minor Loop (Cascade Mode)

When using DirectSOFT32’s PID View to watch the SP value of the minor loop,
DirectSOFT32 automatically reads the major loop’s control output and displays it for
the minor loop’s SP. The minor loop’s normal SP location, V+02, remains
unchanged.
Now, we use the loop parameter arrangement above and draw its equivalent loop
schematic, shown below.

Process Variable

�+
–

Setpoint

Cascade

Auto/Manual

Control Output V+05

Local SP

Loop
Calculation

Control
Output

Loop
Calculation

Minor Cascaded loopMajor loop

Remote
SP

V+02

Remember that a major loop goes to Manual Mode automatically if its minor loop is
taken out of Cascade Mode.

Cascaded Loops in
the DL250–1,
DL260 CPUs

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–55
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Process Alarms
The performance of a process control loop may be generally measured by how
closely the process variable matches the setpoint. Most process control loops in
industry operate continuously, and will eventually lose control of the PV due to an
error condition. Process alarms are vital in early discovery of a loop error condition,
and can alert plant personnel to manually control a loop or take other measures until
the error condition has been repaired.
The DL250–1 and DL260 CPUs have a sophisticated set of alarm features for each
loop:

� PV Absolute Value Alarms – monitors the PV with respect to two lower
limit values and two upper limit values. It generates alarms whenever
the PV goes outside these programmed limits.

� PV Deviation Alarm – monitors the PV value as compared to the SP. It
alarms when the difference between the PV and SP exceed the
programmed alarm value.

� PV Rate-of-change Alarm – computes the rate-of-change of the PV,
and alarms if it exceeds the programmed alarm amount

� Alarm Hysteresis – works in conjunction with the absolute value and
deviation alarms to eliminate alarm “chatter” near alarm thresholds.

The alarm thresholds are fully programmable, and each type of alarm may be
independently enabled and monitored. The following diagram shows the PV
monitoring function. Bits 12, 13, and 14 of PID Mode 1 Setting V+00 word in the loop
parameter table to enable/disable the alarms. DirectSOFT32’s PID View setup
dialog screens allow easy programming, enabling, and monitoring of the alarms.
Ladder logic may monitor the alarm status by examining bits 3 through 9 of PID
Mode and alarm Status word V+06 in the loop table.

Process Variable

Loop
Calculation�

Error Term
+

–

Control OutputSetpoint

PID Mode 1 Setting

013456789101112131415 2Bit

Alarm Enable Bits

1

0

Alarm Generation

PV Value

PV Deviation

PV Rate-of-change

PID Alarm Word

013456789101112131415 2Bit

1

0
1

0

Alarm Bits

Enable Alarms Monitor Alarms

Unlike the PID calculations, the alarms are always functioning any time the CPU is in
Run Mode. The loop may be in Manual, Auto, or Cascade, and the alarms will be
functioning if the enable bit(s) as listed above are set =1.

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–56
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The PV absolute value alarms are organized as two upper and two lower alarms.
The alarm status is false as long as the PV value remains in the region between the
upper and lower alarms, as shown below. The alarms nearest the safe zone are
named High Alarm and Low Alarm. If the loop loses control, the PV will cross one of
these thresholds first. Therefore, you can program the appropriate alarm threshold
values in the loop table locations shown below to the right. The data format is the
same as the PV and SP (12-bit or 15-bit). The threshold values for these alarms
should be set to give an operator an early warning if the process loses control.

PV

High–high Alarm

High Alarm

Low Alarm
Low–low Alarm

Loop Table

V+16 High-high AlarmXXXX

V+15 High AlarmXXXX

V+14 Low AlarmXXXX

V+13 Low-low AlarmXXXX

If the process remains out of control for some time, the PV will eventually cross one
of the outer alarm thresholds, named High-high alarm and Low-low alarm. Their
threshold values are programmed using the loop table registers listed above. A
High-high or Low-low alarm indicates a serious condition exists, and needs the
immediate attention of the operator.

The PV Absolute Value Alarms are
reported in the four bits in the PID Mode
and Alarm Status word in the loop table, as
shown to the right. We highly recommend
using ladder logic to monitor these bits.
The bit-of-word instructions make this
easy to do. Additionally, you can monitor
PID alarms using DirectSOFT32.

PID Mode and Alarm Status V+06

013456789101112131415 2Bit

High-high Alarm
High Alarm
Low Alarm
Low-low Alarm

The PV Deviation Alarms monitor the PV deviation with respect to the SP value. The
deviation alarm has two programmable thresholds, and each threshold is applied
equally above and below the current SP value. In the figure below, the smaller
deviation alarm is called the “Yellow Deviation”, indicating a cautionary condition for
the loop. The larger deviation alarm is called the “Red Deviation”, indicating a strong
error condition for the loop. The threshold values use the loop parameter table
locations V+17 and V+20 as shown.

SP

Red Deviation Alarm

Yellow Deviation Alarm Loop Table

V+17 Yellow Deviation AlarmXXXX

V+20 Red Deviation AlarmXXXX
Yellow Deviation Alarm

Red Deviation Alarm

Green

Yellow

Red

Yellow

Red

The thresholds define zones, which fluctuate with the SP value. The green zone
which surrounds the SP value represents a safe (no alarm) condition. The yellow
zones lie outside the green zone, and the red zones are beyond those.

PV Absolute
Value Alarms

PV Deviation
Alarms

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–57
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The PV Deviation Alarms are reported in
the two bits in the PID Mode and Alarm
Status word in the loop table, as shown to
the right. We highly recommend using
ladder logic to monitor these bits. The
bit-of-word instructions make this easy to
do. Additionally, you can monitor PID
alarms using DirectSOFT32.

PID Mode and Alarm Status V+06

013456789101112131415 2Bit

Red Deviation
Yellow Deviation

The PV Deviation Alarm can be independently enabled and disabled from the other
PV alarms, using bit 13 of the PID Mode 1 Setting V+00 word.
Remember the alarm hysteresis feature works in conjunction with both the deviation
and absolute value alarms, and is discussed at the end of this section.

One powerful way to get an early warning of a process fault is to monitor the
rate-of-change of the PV. Most batch processes have large masses and
slowly-changing PV values. A relatively fast-changing PV will result from a broken
signal wire for either the PV or control output, a SP value error, or other causes. If the
operator responds to a PV Rate-of-Change Alarm quickly and effectively, the PV
absolute value will not reach the point where the material in process would be ruined.
The DL250–1 and DL260 loop controllers provide a programmable PV
Rate-of-Change Alarm, as shown below. The rate-of-change is specified in PV units
change per loop sample time. This value is programmed into the loop table location
V+21.

Loop Table

V+21 PV Rate-of-Change AlarmXXXX

PV

PV slope OK

Sample time

PV slope excessive

rate-of-change alarm

Sample time

PID Mode and Alarm Status V+06

013456789101112131415 2Bit

PV Rate of
Change Alarm

As an example, suppose the PV is temperature for our process, and we want an
alarm when the temperature changes faster than 15 degrees / minute. We must
know PV counts per degree and the loop sample rate. Then, suppose the PV value
(in V+03 location) represents 10 counts per degree, and the loop sample rate is 2
seconds. We will use the formula below to convert our engineering units to counts /
sample period:

15 degrees
Alarm Rate-of-Change =

1 minute
X

10 counts / degree

30 loop samples / min.
=

150

30
= 5 counts / sample period

From the calculation result, we would program the value “5” in the loop table for the
rate-of-change. The PV Rate-of-Change Alarm can be independently enabled and
disabled from the other PV alarms, using bit 14 of the PID Mode 1 Setting V+00 word.
The alarm hysteresis feature (discussed next) does not affect the Rate-of-Change
Alarm.

PV Rate-of-Change
Alarm

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–58
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The PV Absolute Value Alarm and PV Deviation Alarm are programmed using
threshold values. When the absolute value or deviation exceeds the threshold, the
alarm status becomes true. Real-world PV signals have some noise on them, which
can cause some fluctuation in the PV value in the CPU. As the PV value crosses an
alarm threshold, its fluctuations cause the alarm to be intermittent and annoy
process operators. The solution is to use the PV Alarm Hysteresis feature.
The PV Alarm Hysteresis amount is programmable from 1 to 200 (hex). When using
the PV Deviation Alarm, the programmed hysteresis amount must be less than the
programmed deviation amount. The figure below shows how the hysteresis is
applied when the PV value goes past a threshold and descends back through it.

Loop Table

V+22 PV Alarm HysteresisXXXX
PV

Alarm threshold

Alarm
0
1

Hysteresis

The hysteresis amount is applied after the threshold is crossed, and toward the safe
zone. In this way, the alarm activates immediately above the programmed threshold
value. It delays turning off until the PV value has returned through the threshold by
the hysteresis amount.

The PV Alarm threshold values must have
certain mathematical relationships to be
valid. The requirements are listed below. If
not met, the Alarm Programming Error bit
will be set, as indicated to the right.

PID Mode and Alarm Status V+06

013456789101112131415 2Bit

Alarm Programming Error

� PV Absolute Alarm value requirements:
Low-low < Low < High < High-high

� PV Deviation Alarm requirements:
Yellow < Red

PV Alarm
Hysteresis

Alarm
Programing Error

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–59
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Ramp/Soak Generator

Our discussion of basic loop operation noted the setpoint for a loop will be generated
in various ways, depending on the loop operating mode and programming
preferences. In the figure below, the ramp / soak generator is one of the ways the SP
may be generated. It is the responsibility of your ladder program to ensure only one
source attempts to write the SP value at V+02 at any particular time.

Process Variable

Loop
Calculation�+

–

Control OutputSetpoint V+02

Setpoint Sources:
Operator Input
Ramp/soak generator
Ladder Program
Another loop’s output (cascade)

If the SP for your process rarely changes or can tolerate step changes, you probably
will not need to use the ramp/soak generator. However, some processes require
precisely-controlled SP value changes. The ramp / soak generator can greatly
reduce the amount of programming required for these applications.

The terms “ramp” and “soak” have special
meanings in the process control industry,
and refer to desired setpoint (SP) values in
temperature control applications. In the
figure to the right, the setpoint increases
during the ramp segment. It remains
steady at one value during the soak
segment. Time

SP

Ramp

Soak

slope

Complex SP profiles can be generated by specifying a series of ramp/soak
segments. The ramp segments are specified in SP units per second time. The soak
time is also programmable in minutes.
It is instructive to view the ramp/soak generator as a dedicated function to generate
SP values, as shown below. It has two categories of inputs which determine the SP
values generated. The ramp/soak table must be programmed in advance,
containing the values that will define the ramp/soak profile. The loop reads from the
table during each PID calculation as necessary. The ramp/soak controls are bits in a
special loop table word that control the real-time start/stop functionality of the
ramp/soak generator. The ladder program can monitor the status of the ramp soak
profile (current ramp/segment number).

Process Variable

Loop
Calculation�+

–

Setpoint Control OutputRamp/soak
Generator

Ramp/soak table

Ramp/soak controls

Introduction

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–60
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Now that we have described the general ramp/soak generator operation, we list its
specific features:

� Each loop has its own ramp/soak generator (use is optional).
� You may specify up to eight ramp/soak steps (16 segments).
� The ramp soak generator can run anytime the PLC is in Run mode. Its

operation is independent of the loop mode (Manual or Auto).
� Ramp/soak real-time controls include Start, Hold, Resume, and Jog.
� Ramp/soak monitoring includes Profile Complete, Soak Deviation (SP

minus PV), and current ramp/soak step number.

The following figure shows a SP profile consisting of ramp/soak segment pairs. The
segments are individually numbered as steps from 1 to 16. The slope of each of the
ramp may be either increasing or decreasing. The ramp/soak generator
automatically knows whether to increase or decrease the SP based on the relative
values of a ramp’s end points. These values come from the ramp/soak table.

SP
Ramp

Soak

Step 1 2
Ramp

Soak

3 4
Ramp

Soak

5 6
Ramp

Soak

13 14
Ramp

Soak

15 16

The parameters which define the
ramp/soak profile for a loop are in a
ramp/soak table. Each loop may have its
own ramp/soak table, but it is optional.
Recall the Loop Parameter table consists
a 32-word block of memory for each loop,
and together they occupy one contiguous
memory area. However, the ramp/soak
table for a loop is individually located,
because it is optional for each loop. An
address pointer in location V+34 in the
loop table specifies the starting location of
the ramp/soak table.
In the example to the right, the loop
parameter tables for Loop #1 and #2
occupy contiguous 32-word blocks as
shown. Each has a pointer to its
ramp/soak table, independently located
elsewhere in user V-memory. Of course,
you may locate all the tables in one group,
as long as they do not overlap.

V–Memory Space

User Data

LOOP #1V2000

32 words

LOOP #2
32 words

V2037

Ramp/Soak #1
32 words

V3000

V2034 =
3000 octal

Ramp/Soak #2
32 words

V3600

V2074 =
3600 octal

V2040

V2077

Ramp/Soak Table

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–61
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The parameters in the ramp/soak table must be user-defined. the most convenient
way is to use DirectSOFT32, which features a special editor for this table. Four
parameters are required to define a ramp and soak segment pair, as pictured below.

� Ramp End Value – specifies the destination SP value for the end of the
ramp. Use the same data format for this number as you use for the SP.
It may be above or below the beginning SP value, so the slope could be
up or down (we don’t have to know the starting SP value for ramp #1).

� Ramp Slope – specifies the SP increase in counts (units) per second. It
is a BCD number from 00.00 to 99.99 (uses implied decimal point).

� Soak Duration – specifies the time for the soak segment in minutes,
ranging from 000.1 to 999.9 minutes in BCD (implied decimal point).

� Soak PV Deviation – (optional) specifies an allowable PV deviation
above and below the SP value during the soak period. A PV deviation
alarm status bit is generated by the ramp/soak generator.

Ramp/Soak Table

V+00 Ramp End SP ValueXXXX

SP

Soak PV
deviation

V+01 Ramp SlopeXXXX

V+02 Soak DurationXXXX

V+03 Soak PV DeviationXXXX

Ramp End
SP Value

Soak
duration

segment becomes active

Slope

The ramp segment becomes active when the previous soak segment ends. If the
ramp is the first segment, it becomes active when the ramp/soak generator is
started, and automatically assumes the present SP as the starting SP.

Offset Step Description Offset Step Description

+ 00 1 Ramp End SP Value + 20 9 Ramp End SP Value

+ 01 1 Ramp Slope + 21 9 Ramp Slope

+ 02 2 Soak Duration + 22 10 Soak Duration

+ 03 2 Soak PV Deviation + 23 10 Soak PV Deviation

+ 04 3 Ramp End SP Value + 24 11 Ramp End SP Value

+ 05 3 Ramp Slope + 25 11 Ramp Slope

+ 06 4 Soak Duration + 26 12 Soak Duration

+ 07 4 Soak PV Deviation + 27 12 Soak PV Deviation

+ 10 5 Ramp End SP Value + 30 13 Ramp End SP Value

+ 11 5 Ramp Slope + 31 13 Ramp Slope

+ 12 6 Soak Duration + 32 14 Soak Duration

+ 13 6 Soak PV Deviation + 33 14 Soak PV Deviation

+ 14 7 Ramp End SP Value + 34 15 Ramp End SP Value

+ 15 7 Ramp Slope + 35 15 Ramp Slope

+ 16 8 Soak Duration + 36 16 Soak Duration

+ 17 8 Soak PV Deviation + 37 16 Soak PV Deviation

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–62
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Many applications do not require all 16 R/S steps. Use all zeros in the table for
unused steps. The R/S generator ends the profile when it finds ramp slope=0.
The individual bit definitions of the Ramp / Soak Table Flag (Addr+33) word is listed
in the following table.

Bit Ramp / Soak Flag Bit Description Read/Write Bit=0 Bit=1

0 Start Ramp / Soak Profile write – 0�1 Start

1 Hold Ramp / Soak Profile write – 0�1 Hold

2 Resume Ramp / soak Profile write – 0�1
Resume

3 Jog Ramp / Soak Profile write – 0�1 Jog

4 Ramp / Soak Profile Complete read – Complete

5 PV Input Ramp / Soak Deviation read Off On

6 Ramp / Soak Profile in Hold read Off On

7 Reserved read Off On

8–15 Current Step in R/S Profile read decode as byte (hex)

The main enable control to permit
ramp/soak generation of the SP value is
accomplished with bit 11 in the PID Mode 1
Setting V+00 word, as shown to the right.
The other ramp/soak controls in V+33
shown in the table above will not operate
unless this bit=1 during the entire
ramp/soak process.

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Ramp/Soak
Generator Enable

The four main controls for the ramp/soak
generator are in bits 0 to 3 of the
ramp/soak settings word in the loop
parameter table. DirectSOFT32 controls
these bits directly from the ramp/soak
settings dialog. However, you must use
ladder logic to control these bits during
program execution. We recommend using
the bit-of-word instructions.

Ramp/Soak Settings V+33

013456789101112131415 2Bit

Jog
Resume
Hold
Start

Ladder logic must set a control bit to a “1” to command the corresponding function.
When the loop controller reads the ramp/soak value, it automatically turns off the bit
for you. Therefore, a reset of the bit is not required, when the CPU is in Run Mode.

The example program rung to the right
shows how an external switch X0 can turn
on, and the PD contact uses the leading
edge to set the proper control bit to start
the ramp soak profile. This uses the Set
Bit-of-word instruction.

X0

SET
B2033.0

Start R/S Generator

Ramp / Soak
Table Flags

Ramp/Soak
Generator Enable

Ramp/Soak
Controls

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–63
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

The normal state for the ramp/soak control bits is all zeros. Ladder logic must set
only one control bit at a time.

� Start – a 0-to-1 transition will start the ramp soak profile. The CPU must
be in Run Mode, and the loop can be in Manual or Auto Mode. If the
profile is not interrupted by a Hold or Jog command, it finishes normally.

� Hold – a 0-to-1 transition will stop the ramp/soak profile in its current
state, and the SP value will be frozen.

� Resume – a 0-to-1 transition cause the ramp/soak generator to resume
operation if it is in the hold state. The SP values will resume from their
previous value.

� Jog – a 0-to-1 transition will cause the ramp/soak generator to truncate
the current segment (step), and go to the next segment.

You can monitor the Ramp/Soak profile
status using other bits in the Ramp/Soak
Settings V+33 word, shown to the right.
� R/S Profile Complete – =1 when the

last programmed step is done.
� Soak PV Deviation – =1 when the

error (SP–PV) exceeds the specified
deviation in the R/S table.

� R/S Profile in Hold – =1 when the
profile was active but is now in hold.

Ramp/Soak Settings V+33

013456789101112131415 2Bit

R/S Profile Complete
Soak PV Deviation
R/S Profile in Hold

The number of the current step is available
in the upper 8 bits of the Ramp/Soak
Settings V+33 word. The bits represent a
2-digit hex number, ranging from 1 to 10.
Ladder logic can monitor these to
synchronize other parts of the program
with the ramp/soak profile. Load this word
to the accumulator and shift right 8 bits,
and you have the step number.

Ramp/Soak Settings V+33

013456789101112131415 2Bit

Current Profile Step, 2–digit hex

Value = 01 to 10 hex,
 or 1 to 16 decimal

The starting address for the ramp/soak
table must be a valid location. If the
address points outside the range of user
V-memory, one of the bits to the right will
turn on when the ramp/soak generator is
started. We recommend using
DirectSOFT32 to configure the
ramp/soak table. It automatically range
checks the addresses for you.

Ramp/Soak Table Error V+35

013456789101112131415 2Bit

Starting Address set out of
V-memory upper range

Starting Address set out
of V-memory lower range

Starting Address set in
reserved system V-memory

It’s a good idea to test your ramp/soak profile before using it to control the process.
This is easy to do, because the ramp/soak generator will run even when the loop is in
Manual Mode. Using DirectSOFT32’s PID View will be a real time-saver, because it
will draw the profile on-screen for you. Be sure to set the trending timebase slow
enough to display completed ramp-soak segment pairs in the waveform window.

Ramp/Soak Profile
Monitoring

Ramp/Soak
Programming
Errors

Testing Your
Ramp/Soak Profile

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–64
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Troubleshooting Tips

Q. The loop will not go into Automatic Mode.
A. Check the following for possible causes:

� A PV alarm exists, or a PV alarm programming error exists.
� The loop is the major loop of a cascaded pair, and the minor loop is not

in Cascade Mode.

Q. The Control Output stays at zero constantly when the loop is in Automatic Mode.
A. Check the following for possible causes:

� The Control Output upper limit in loop table location V+31 is zero.
� The loop is driven into saturation, because the error never goes to zero

value and changes (algebraic) sign.

Q. The Control Output value is not zero, but it is incorrect.
A. Check the following for possible causes:

� The gain values are entered improperly. Remember, gains are entered
in the loop table in BCD, while the SP and PV are in binary. If you are
using DirectSOFT32, it displays the SP, PV, Bias and Control output in
decimal (BCD), converting it to binary before updating the loop table.

Q. The Ramp/Soak Generator does not operate when I activate the Start bit.
A. Check the following for possible causes:

� The Ramp/Soak enable bit is off. Check the status of bit 11 of loop
parameter table location V+00. It must be set =1.

� The hold bit or other bits in the Ramp/Soak control are on.
� The beginning SP value and the first ramp ending SP value are the

same, so first ramp segment has no slope and consequently has no
duration. The ramp/soak generator moves quickly to the soak segment,
giving the illusion the first ramp is not working.

� The loop is in Cascade Mode, and is trying to get the SP remotely.
� The SP upper limit value in the loop table location V+27 is too low.
� Check your ladder program to verify it is not writing to the SP location

(V+02 in the loop table). A quick way to do this is to temporarily place an
end coil at the beginning of your program, then go to PLC Run Mode,
and manually start the ramp/soak generator.

Q. The PV value in the table is constant, even though the analog module receives the PV signal.
A. Your ladder program must read the analog value from the module successfully
and write it into the loop table V+03 location. Verify the analog module is generating
the value, and the ladder is working.

Q. The Derivative gain doesn’t seem to have any affect on the output.
A. The derivative limit is probably enabled (see section on derivative gain limiting).

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–65
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Q. The loop Setpoint appears to be changing by itself.
A. Check the following for possible causes:

� The Ramp/Soak generator is enabled, and is generating setpoints.
� If this symptom occurs on loop Manual-to-Auto Mode changes, the loop

automatically sets the SP=PV (bumpless transfer feature).
� Check your ladder program to verify it is not writing to the SP location

(V+02 in the loop table). A quick way to do this is to temporarily place an
end coil at the beginning of your program, then go to PLC Run Mode.

Q. The SP and PV values I enter with DirectSOFT32 work okay, but these values do not work
properly when the ladder program writes the data.

A. The PID View in DirectSOFT lets you enter SP, PV, and Bias values in decimal,
and displays them in decimal for your convenience. For example, when the data
format is 12 bit unipolar, the values range from 0 to 4095. However, the loop table
actually requires these in hex, so DirectSOFT32 converts them for you. The values
in the table range from 0 to FFF, for 12-bit unipolar format.

Q. The loop seems unstable and impossible to tune, no matter what I gains I use.
A. Check the following for possible causes:

� The loop sample time is set too long. Refer to the section near the front
of this chapter on selecting the loop update time.

� The gains are too high. Start out by reducing the derivative gain to zero.
Then reduce the integral gain, and the proportional gain if necessary.

� There is too much transfer lag in your process. This means the PV
reacts sluggishly to control output changes. There may be too much
“distance” between actuator and PV sensor, or the actuator may be
weak in its ability to transfer energy into the process.

� There may be a process disturbance that is over-powering the loop.
Make sure the PV is relatively steady when the SP is not changing.

Bibliography

Fundamentals of Process Control Theory, Second Edition
Author: Paul W. Murrill
Publisher: Instrument Society of America
ISBN 1–55617–297–4

Application Concepts of Process Control
Author: Paul W. Murrill
Publisher: Instrument Society of America
ISBN 1–55617–080–7

PID Controllers: Theory, Design, and Tuning, 2nd Edition
Author: K. Astrom and T Hagglund
Publisher: Instrument Society of America
ISBN 1–55617–516–7

Fundamentals of Temperature, Pressure, and Flow
Measurements, Third edition
Author: Robert P. Benedict
Publisher: John Wiley and Sons
ISBN 0–471–89383–8

Process / Industrial Instruments & Controls Handbook,
Fourth Edition
Author (Editor-in-Chief): Douglas M. Considine
Publisher: McGraw-Hill, Inc.
ISBN 0–07–012445–0

pH Measurement and Control, Second Edition
Author: Gregory K. McMillan
Publisher: Instrument Society of America
ISBN 1–55617–483–7

Process Control, Third Edition
Instrument Engineer’s Handbook
Author (Editor-in-Chief): Bela G. Liptak
Publisher: Chilton
ISBN 0–8019–8242–1

Process Measurement and Analysis, Third Edition
Instrument Engineer’s Handbook
Author (Editor-in-Chief): Bela G. Liptak
Publisher: Chilton
ISBN 0–8019–8197–2

P
ID

 L
oo

p
O

pe
ra

tio
n

(D
L2

50
–1

/D
L2

60
 O

nl
y)

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–66
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Glossary of PID Loop Terminology

Automatic Mode An operational mode of a loop, in which it makes PID calculations and updates the
loop’s control output.

Bias Freeze A method of preserving the bias value (operating point) for a control output, by inhibiting
the integrator when the output goes out-of-range. The benefit is a faster loop recovery.

Bias Term In the position form of the PID equation, it is the sum of the integrator and the initial
control output value.

Bumpless Transfer A method of changing the operation mode of a loop while avoiding the usual sudden
change in control output level. This consequence is avoided by artificially making the SP
and PV equal, or the bias term and control output equal at the moment of mode change.

Cascaded Loops A cascaded loop receives its setpoint from the output of another loop. Cascaded loops
have a major/minor relationship, and work together to ultimately control one PV.

Cascade Mode An operational mode of a loop, in which it receives its SP from another loop’s output.

Continuous Control Control of a process done by delivering a smooth (analog) signal as the control output.

Direct-Acting Loop A loop in which the PV increases in response to a control output increase. In other
words, the process has a positive gain.

Error The difference in value between the SP and PV, Error=SP – PV

Error Deadband An optional feature which makes the loop insensitive to errors when they are small. You
can specify the size of the deadband.

Error Squared An optional feature which multiplies the error by itself, but retains the original algebraic
sign. It reduces the effect of small errors, while magnifying the effect of large errors.

Feedforward A method of optimizing the control response of a loop when a change in setpoint or
disturbance offset is known and has a quantifiable effect on the bias term.

Control Output The numerical result of a PID equation which is sent by the loop with the intention of
nulling out the current error.

Derivative Gain A constant that determines the magnitude of the PID derivative term in response to the
current error.

Integral Gain A constant that determines the magnitude of the PID integral term in response to the
current error.

Major Loop In cascade control, it is the loop that generates a setpoint for the cascaded loop.

Manual Mode An operational mode of a loop, it which the PID calculations are stopped. The operator
must manually control the loop by writing to the control output value directly.

Minor Loop In cascade control, the minor loop is the subordinate loop that receives its SP from the
major loop.

On / Off Control A simple method of controlling a process, through on/off application of energy into the
system. The mass of the process averages the on/off effect for a relatively smooth PV. A
simple ladder program can convert the DL250’s continuous loop output to on/off control.

PID Loop A mathematical method of closed-loop control involving the sum of three terms based
on proportional, integral, and derivative error values. The three terms have independent
gain constants, allowing one to optimize (tune) the loop for a particular physical system.

Position Algorithm The control output is calculated so it responds to the displacement (position) of the PV
from the SP (error term)

Process A manufacturing procedure which adds value to raw materials. Process control
particularly refers to inducing chemical changes to the material in process.

Process Variable (PV) A quantitative measurement of a physical property of the material in process, which
affects final product quality and is important to monitor and control.

P
ID

 Loop O
peration

(D
L250–1/D

L260 O
nly)

M
aintenance

8–67
PID Loop Operation (DL250–1 / DL260 only)

DL205 User Manual, 3rd Ed. 06/02

Proportional Gain A constant that determines the magnitude of the PID proportional term in response to
the current error.

PV Absolute Alarm A programmable alarm that compares the PV value to alarm threshold values.

PV Deviation Alarm A programmable alarm that compares the difference between the SP and PV values to
a deviation threshold value.

Ramp / Soak Profile A set of SP values called a profile, which is generated in real time upon each loop
calculation. The profile consists of a series of ramp and soak segment pairs, greatly
simplifying the task of programming the PLC to generate such SP sequences.

Rate Also called differentiator, the rate term responds to the changes in the error term.

Remote Setpoint The location where a loop reads its setpoint when it is configured as the minor loop in a
cascaded loop topology.

Reset Also called integrator, the reset term adds each sampled error to the previous,
maintaining a running total called the bias.

Reset Windup A condition created when the loop is unable to find equilibrium, and the persistent error
causes the integrator (reset) sum to grow excessively (windup). Reset windup causes
an extra recovery delay when the original loop fault is remedied.

Reverse-Acting Loop A loop in which the PV increases in response to a control output decrease. In other
words, the process has a negative gain.

Sampling time The time between PID calculations. The CPU method of process control is called a
sampling controller, because it samples the SP and PV only periodically.

Setpoint (SP) The desired value for the process variable. The setpoint (SP) is the input command to
the loop controller during closed loop operation.

Soak Deviation The soak deviation is a measure of the difference between the SP and PV during a soak
segment of the Ramp / Soak profile, when the Ramp / Soak generator is active.

Step Response The behavior of the process variable in response to a step change in the SP (in closed
loop operation), or a step change in the control output (in open loop operation)

Transfer To change from one loop operational mode to another (between Manual, Auto, or
Cascade). The word “transfer” probably refers to the transfer of control of the control
output or the SP, depending on the particular mode change.

Velocity Algorithm The control output is calculated to represent the rate of change (velocity) for the PV to
become equal to the SP.

19
Maintenance and
Troubleshooting

In This Chapter. . . .
— Hardware Maintenance
— Diagnostics
— CPU Indicators
— PWR Indicator
— RUN Indicator
— CPU Indicator
— BATT Indicator
— Communications Problems
— I/O Module Troubleshooting
— Noise Troubleshooting
— Machine Startup and Program Troubleshooting

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–2
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

Hardware Maintenance
The DL205 is a low maintenance system requiring only a few periodic checks to help
reduce the risks of problems. Routine maintenance checks should be made
regarding two key items.

� Air quality (cabinet temperature, airflow, etc.)
� CPU battery

The quality of the air your system is exposed to can affect system performance. If
you have placed your system in an enclosure, check to see that the ambient
temperature is not exceeding the operating specifications. If there are filters in the
enclosure, clean or replace them as necessary to ensure adequate airflow. A good
rule of thumb is to check your system environment every one to two months. Make
sure the DL205 is operating within the system operating specifications.
The CPU has a battery LED that indicates the battery voltage is low. You should
check this indicator periodically to determine if the battery needs replacing. You can
also detect low battery voltage from within the CPU program. SP43 is a special relay
that comes on when the battery needs to be replaced. If you are using a DL240 CPU,
you can also use a programming device or operator interface to determine the
battery voltage. V7746 contains the battery voltage. For example, a value of 32 in
V7746 would indicate a battery voltage of 3.2V.
The CPU battery is used to retain program V memory and the system parameters.
The life expectancy of this battery is five years.

NOTE: Before installing or replacing your CPU battery, back-up your V-memory and
system parameters. You can do this by using DirectSOFT32 to save the program,
V-memory, and system parameters to hard/floppy disk on a personal computer.

To install the D2–BAT CPU battery in
DL230 or DL240 CPUs:
1. Gently push the battery connector

onto the circuit board connector.
2. Push the battery into the retaining

clip. Don’t use excessive force. You
may break the retaining clip.

3. Make a note of the date the battery
was installed.

To install the D2–BAT–1 CPU battery in the
DL250–1 and DL260 CPUs: (#CR2354)
1. Press the retaining clip on the battery door

down and swing the battery door open.
2. Remove old battery and insert the new

battery into the coin–type slot with the
larger (+) side outwards.

3. Close the battery door making sure that it
locks securely in place.

4. Make a note of the date the battery was
installed.

DL230
and
DL240

DL250–1
DL260

WARNING: Do not attempt to recharge the battery or dispose of an old battery by
fire. The battery may explode or release hazardous materials.

Standard
Maintenance

Air Quality
Maintenance

Low Battery
Indicator

CPU Battery
Replacement

M
aintenance

and Troubleshooting
M

aintenance
and Troubleshooting

9–3
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

Diagnostics

Your DL205 system performs many pre-defined diagnostic routines with every CPU
scan. The diagnostics have been designed to detect various types of failures for the
CPU and I/O modules. There are two primary error classes, fatal and non-fatal.

Fatal errors are errors the CPU has detected that offer a risk of the system not
functioning safely or properly. If the CPU is in Run Mode when the fatal error occurs,
the CPU will switch to Program Mode. (Remember, in Program Mode all outputs are
turned off.) If the fatal error is detected while the CPU is in Program Mode, the CPU
will not enter Run Mode until the error has been corrected.

Here are some examples of fatal errors.

� Base power supply failure

� Parity error or CPU malfunction

� I/O configuration errors

� Certain programming errors

Non-fatal errors are errors that are flagged by the CPU as requiring attention. They
can neither cause the CPU to change from Run Mode to Program Mode, nor do they
prevent the CPU from entering Run Mode. There are special relays the application
program can use to detect if a non-fatal error has occurred. The application program
can then be used to take the system to an orderly shutdown or to switch the CPU to
Program Mode if necessary.

Some examples of non-fatal errors are:

� Backup battery voltage low

� All I/O module errors

� Certain programming errors

Diagnostic information can be found in several places with varying levels of
message detail.

� The CPU automatically logs error codes and any FAULT messages into
two separate tables which can be viewed with the Handheld or
DirectSOFT32.

� The handheld programmer displays error numbers and short
descriptions of the error.

� DirectSOFT32 provides the error number and an error message.

� Appendix B in this manual has a complete list of error messages sorted
by error number.

Many of these messages point to supplemental memory locations which can be
referenced for additional related information. These memory references are in the
form of V-memory and SPs (special relays).

The following two tables name the specific memory locations that correspond to
certain types of error messages. The special relay table also includes status
indicators which can be used in programming. For a more detailed description of
each of these special relays refer to Appendix D.

Diagnostics

Fatal Errors

Non-fatal Errors

Finding Diagnostic
Information

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–4
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

Error Class Error Category Diagnostic
V-memory

Battery Voltage (DL240 only) Shows battery voltage to tenths (32 is 3.2V) V7746

User-Defined Error code used with FAULT instruction V7751

I/O Configuration Correct module ID code V7752

Incorrect module ID code V7753

Base and Slot number where error occurs V7754

System Error Fatal Error code V7755

Major Error code V7756

Minor Error code V7757

Module Diagnostic Base and slot number where error occurs V7760

Always holds a “0” V7761

Error code V7762

Grammatical Address where syntax error occurs V7763

Error Code found during syntax check V7764

CPU Scan Number of scans since last Program to Run
Mode transition

V7765

Current scan time (ms) V7775

Minimum scan time (ms) V7776

Maximum scan time (ms) V7777

V-memory
Locations
Corresponding to
Error Codes

M
aintenance

and Troubleshooting
M

aintenance
and Troubleshooting

9–5
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

Startup and Real-time Relays

SP0 On first scan only

SP1 Always ON

SP3 1 minute clock

SP4 1 second clock

SP5 100 millisecond clock

SP6 50 millisecond clock

SP7 On alternate scans

CPU Status Relays

SP11 Forced run mode (DL240 only)

SP12 Terminal run mode

SP13 Test run mode
(DL240 only)

SP15 Test program mode (DL240 only)

SP16 Terminal program mode

SP20 STOP instruction was executed

SP22 Interrupt enabled

System Monitoring Relays

SP40 Critical error

SP41 Non-critical error

SP43 Battery low

SP44 Program memory error

SP45 I/O error

SP46 Communications error

SP47 I/O configuration error

SP50 Fault instruction was executed

SP51 Watchdog timeout

SP52 Syntax error

SP53 Cannot solve the logic

SP54 Intelligent module communication error

Accumulator Status Relays

SP60 Acc. is less than value

SP61 Acc. is equal to value

SP62 Acc. is greater than value

SP63 Acc. result is zero

SP64 Half borrow occurred

SP65 Borrow occurred

SP66 Half carry occurred

SP67 Carry occurred

SP70 Result is negative (sign)

SP71 Pointer reference error

SP73 Overflow

SP75 Data is not in BCD

SP76 Load zero

Communication Monitoring Relays

SP116
DL230/DL240

CPU is communicating with another
device

SP116
DL250–1 / DL260

Port 2 is communicating with another
device

SP117 Communication error on Port 2
(DL250–1 / DL260 only)

SP120 Module busy, Slot 0

SP121 Communication error Slot 0

SP122 Module busy, Slot 1

SP123 Communication error Slot 1

SP124 Module busy, Slot 2

SP125 Communication error Slot 2

SP126 Module busy, Slot 3

SP127 Communication error Slot 3

SP130 Module busy, Slot 4

SP131 Communication error Slot 4

SP132 Module busy, Slot 5

SP133 Communication error Slot 5

SP134 Module busy, Slot 6

SP135 Communication error Slot 6

SP136 Module busy, Slot 7

SP137 Communication error Slot 7

Special Relays (SP)
Corresponding to
Error Codes

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–6
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

Each system component has a code identifier. This code identifier is used in some of
the error messages related to the I/O modules. The following table shows these
codes.

Code
(Hex)

Component Type

04 CPU

03 I/O Base

20 8 pt. Output

21 8 pt. Input

24 4input/output
combination

28 12 pt. Output,
16 pt. Output

3F 32 pt. Input

30 32 pt. Output

52 H2–ERM

51 H2–CTRIO

Code
(Hex)

Component Type

36 Analog Input

2B 16 pt. Input

37 Analog Output

3D Analog I/O Combo

4A Counter Interface

7F Abnormal

FF No module
detected

EE D2–DCM
H2–ECOM
F2–CP128

BE D2–RMSM

The following diagram shows an example of how the I/O module codes are used:

Program Control Information

V7752

V7753

V7754

SP47

0020

0026

0002

Desired module ID code

Current module ID code

Location of conflict

I/O Configuration Error

V7755 0252 Fatal error code

E252
NEW I/O CFG

I/O Module Codes

M
aintenance

and Troubleshooting
M

aintenance
and Troubleshooting

9–7
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

The DL240 CPU will automatically log any system error codes and any custom
messages you have created in your application program with the FAULT
instructions. The CPU logs the error code, the date, and the time the error occurred.
There are two separate tables that store this information.

� Error Code Table – the system logs up to 32 errors in the table. When
an error occurs, the errors already in the table are pushed down and the
most recent error is loaded into the top position. If the table is full when
an error occurs, the oldest error is pushed (erased) from the table.

� Message Table – the system logs up to 16 messages in this table. When
a message is triggered, the messages already stored in the table are
pushed down and the most recent message is loaded into the top
position. If the table is full when an error occurs, the oldest message is
pushed (erased) from the table.

The following diagram shows an example of an error table for messages.

Date Time Message

1993–05–26 08:41:51:11 *Conveyor–2 stopped

1993–04–30 17:01:11:56 * Conveyor–1 stopped

1993–04–30 17:01:11:12 * Limit SW1 failed

1993–04–28 03:25:14:31 * Saw Jam Detect

You can access the error code table and the message table through
DirectSOFT32’s PLC Diagnostic sub-menus or from the Handheld Programmer.
Details on how to access these logs are provided in the DL205 DirectSOFT32
manual.

The following examples show you how to use the Handheld and AUX Function 5C to
show the error codes. The most recent error or message is always displayed. You
can use the PREV and NXT keys to scroll through the messages.

 ERROR/MESAGE
AUX 5C HISTORY D

 ERROR/MESAGE
AUX 5C HISTORY D

Use AUX 5C to view the tables

Example of an error display

93/09/21 10:11:15
E252NEW I/O CFG

Use the arrow key to select Errors or Messages

CLR SHFT ENT
5

F
2

C

ENT

Year Month Day Time

AUX

Error Message
Tables

230

�

240

�

250–1

�

260

�

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–8
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

The System error log contains 32 of the most recent errors that have been detected.
The errors that are trapped in the error log are a subset of all the error messages
which the DL205 systems generate. These errors can be generated by the CPU or
by the Handheld Programmer, depending on the actual error. Appendix B provides a
more complete description of the error codes.

The errors can be detected at various times. However, most of them are detected at
power-up, on entry to Run Mode, or when a Handheld Programmer key sequence
results in an error or an illegal request.

Error
Code

Description

E003 Software time-out

E004 Invalid instruction
(RAM parity error in the CPU)

E041 CPU battery low

E043 Memory cartridge battery low

E099 Program memory exceeded

E101 CPU memory cartridge missing

E104 Write fail

E151 Invalid command

E155 RAM failure

E201 Terminal block missing

E202 Missing I/O module

E203 Blown fuse

E206 User 24V power supply failure

E210 Power fault

E250 Communication failure in the I/O chain

E251 I/O parity error

E252 New I/O configuration

E262 I/O out of range

E312 Communications error 2

E313 Communications error 3

E316 Communications error 6

E320 Time out

E321 Communications error

E499 Invalid Text entry for Print Instruction

E501 Bad entry

E502 Bad address

E503 Bad command

E504 Bad reference / value

E505 Invalid instruction

Error
Code

Description

E506 Invalid operation

E520 Bad operation – CPU in Run

E521 Bad operation – CPU in Test Run

E523 Bad operation – CPU in Test Program

E524 Bad operation – CPU in Program

E525 Mode switch not in TERM

E526 Unit is offline

E527 Unit is online

E528 CPU mode

E540 CPU locked

E541 Wrong password

E542 Password reset

E601 Memory full

E602 Instruction missing

E604 Reference missing

E610 Bad I/O type

E611 Bad Communications ID

E620 Out of memory

E621 EEPROM Memory not blank

E622 No Handheld Programmer EEPROM

E624 V memory only

E625 Program only

E627 Bad write operation

E628 Memory type error (should be EEPROM)

E640 Miscompare

E650 Handheld Programmer system error

E651 Handheld Programmer ROM error

E652 Handheld Programmer RAM error

System Error
Codes

230

�

240

�

250–1

�

260

�

M
aintenance

and Troubleshooting
M

aintenance
and Troubleshooting

9–9
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

The following list shows the errors that can occur when there are problems with the
program. These errors will be detected when you try to place the CPU into Run
Mode, or, when you use AUX 21 – Check Program. The CPU will also turn on SP52
and store the error code in V7755. Appendix B provides a more complete description
of the error codes.

Error Code Description

E4** No Program in CPU

E401 Missing END statement

E402 Missing LBL

E403 Missing RET

E404 Missing FOR

E405 Missing NEXT

E406 Missing IRT

E412 SBR/LBL >64

E413 FOR/NEXT >64

E421 Duplicate stage reference

E422 Duplicate SBR/LBL reference

E423 Nested loops

E431 Invalid ISG/SG address

E432 Invalid jump (GOTO) address

E433 Invalid SBR address

E434 Invalid RTC address

E435 Invalid RT address

E436 Invalid INT address

E437 Invalid IRTC address

E438 Invalid IRT address

E440 Invalid Data Address

E441 ACON/NCON

E451 Bad MLS/MLR

E452 X input used as output coil

E453 Missing T/C

E454 Bad TMRA

E455 Bad CNT

E456 Bad SR

Error Code Description

E461 Stack Overflow

E462 Stack Underflow

E463 Logic Error

E464 Missing Circuit

E471 Duplicate coil reference

E472 Duplicate TMR reference

E473 Duplicate CNT reference

E480 CV position error

E481 CV not connected

E482 CV exceeded

E483 CVJMP placement error

E484 No CV

E485 No CVJMP

E486 BCALL placement error

E487 No Block defined

E488 Block position error

E489 Block CR identifier error

E490 No Block stage

E491 ISG position error

E492 BEND position error

E493 BEND I error

E494 No BEND

Program Error
Codes

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–10
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

CPU Indicators
The DL205 CPUs have indicators on the front to help you diagnose problems with
the system. The table below gives a quick reference of potential problems
associated with each status indicator. Following the table will be a detailed analysis
of each of these indicator problems.

Indicator Status Potential Problems

PWR (off) 1. System voltage incorrect.
2. Power supply/CPU is faulty
3. Other component such an I/O module has power

supply shorted
4. Power budget exceeded for the base being used

RUN
(will not come on)

1. CPU programming error
2. Switch in TERM position
3. Switch in STOP position (DL250–1, DL260 only)

CPU (on) 1. Electrical noise interference
2. CPU defective

BATT (on) 1. CPU battery low
2. CPU battery missing, or disconnected

Port 1

Port 2

���

���

���

���

��	

���

��	

�
�

��

��

��
��

��
�

�����
�
�

��	

�
�

��

��

��
��

�������

�
�

Port 1

Port 2

Status Indicators

Status Indicators

Mode Switch

Mode Switch

Battery Slot

�����

�����

M
aintenance

and Troubleshooting
M

aintenance
and Troubleshooting

9–11
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

PWR Indicator

There are four general reasons for the CPU power status LED (PWR) to be OFF:
1. Power to the base is incorrect or is not applied.
2. Base power supply is faulty.
3. Other component(s) have the power supply shut down.
4. Power budget for the base has been exceeded.

If the voltage to the power supply is not correct, the CPU and/or base may not
operate properly or may not operate at all. Use the following guidelines to correct the
problem.

WARNING: To minimize the risk of electrical shock, always disconnect the system
power before inspecting the physical wiring.

1. First, disconnect the system power and check all incoming wiring for loose
connections.

2. If you are using a separate termination panel, check those connections to
make sure the wiring is connected to the proper location.

3. If the connections are acceptable, reconnect the system power and
measure the voltage at the base terminal strip to insure it is within
specification. If the voltage is not correct shut down the system and correct
the problem.

4. If all wiring is connected correctly and the incoming power is within the
specifications required, the base power supply should be returned for
repair.

There is not a good check to test for a faulty CPU other than substituting a known
good one to see if this corrects the problem. If you have experienced major power
surges, it is possible the CPU and power supply have been damaged. If you suspect
this is the cause of the power supply damage, a line conditioner which removes
damaging voltage spikes should be used in the future.

Incorrect Base
Power

Faulty CPU

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–12
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

It is possible a faulty module or external device using the system 5V can shut down
the power supply. This 5V can be coming from the base or from the CPU
communication ports.

To test for a device causing this problem:
1. Turn off power to the CPU.
2. Disconnect all external devices (i.e., communication cables) from the CPU.
3. Reapply power to the system.

If the power supply operates normally you may have either a shorted device or a
shorted cable. If the power supply does not operate normally then test for a module
causing the problem by following the steps below:
If the PWR LED operates normally the problem could be in one of the modules. To
isolate which module is causing the problem, disconnect the system power and
remove one module at a time until the PWR LED operates normally.
Follow the procedure below:

� Turn off power to the base.
� Remove a module from the base.
� Reapply power to the base.

Bent base connector pins on the module can cause this problem. Check to see the
connector is not the problem.

If the machine had been operating correctly for a considerable amount of time prior
to the indicator going off, the power budget is not likely to be the problem. Power
budgeting problems usually occur during system start-up when the PLC is under
operation and the inputs/outputs are requiring more current than the base power
supply can provide.

WARNING: The PLC may reset if the power budget is exceeded. If there is any doubt
about the system power budget please check it at this time. Exceeding the power
budget can cause unpredictable results which can cause damage and injury. Verify
the modules in the base operate within the power budget for the chosen base. You
can find these tables in Chapter 4, Bases and I/O Configuration.

Device or Module
causing the Power
Supply to
Shutdown

Power Budget
Exceeded

M
aintenance

and Troubleshooting
M

aintenance
and Troubleshooting

9–13
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

RUN Indicator

If the CPU will not enter the Run mode (the RUN indicator is off), the problem is
usually in the application program, unless the CPU has a fatal error. If a fatal error
has occurred, the CPU LED should be on. (You can use a programming device to
determine the cause of the error.)
If you are using a DL240, DL250–1 or DL260 and you are trying to change the modes
with a programming device, make sure the mode switch is in the TERM position.
Both of the programming devices, Handheld Programmer and DirectSOFT32, will
return a error message describing the problem. Depending on the error, there may
also be an AUX function you can use to help diagnose the problem. The most
common programming error is “Missing END Statement”. All application programs
require an END statement for proper termination. A complete list of error codes can
be found in Appendix B.

CPU Indicator
If the CPU indicator is on, a fatal error has occurred in the CPU. Generally, this is not
a programming problem but an actual hardware failure. You can power cycle the
system to clear the error. If the error clears, you should monitor the system and
determine what caused the problem. You will find this problem is sometimes caused
by high frequency electrical noise introduced into the CPU from an outside source.
Check your system grounding and install electrical noise filters if the grounding is
suspected. If power cycling the system does not reset the error, or if the problem
returns, you should replace the CPU.

BATT Indicator
If the BATT indicator is on, the CPU battery is either disconnected or needs
replacing. The battery voltage is continuously monitored while the system voltage is
being supplied.

Communications Problems
If you cannot establish communications with the CPU, check these items.

� The cable is disconnected.
� The cable has a broken wire or has been wired incorrectly.
� The cable is improperly terminated or grounded.
� The device connected is not operating at the correct baud rate (9600

baud for the top port. Use AUX 56 to select the baud rate for the bottom
port on a DL240, DL250–1 and DL260).

� The device connected to the port is sending data incorrectly.
� A grounding difference exists between the two devices.
� Electrical noise is causing intermittent errors.
� The CPU has a bad communication port and the CPU should be

replaced.
If an error occurs the indicator will come on and stay on until a successful
communication has been completed.

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–14
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

I/O Module Troubleshooting

If you suspect an I/O error, there are several things that could be causing the
problem.

� A blown fuse
� A loose terminal block
� The 24 VDC supply has failed
� The module has failed
� The I/O configuration check detects a change in the I/O configuration

If the modules are not providing any clues to the problem, run AUX 42 from the
handheld programmer or I/O diagnostics in DirectSOFT32. Both options will
provide the base number, the slot number and the problem with the module. Once
the problem is corrected the indicators will reset.
An I/O error will not cause the CPU to switch from the run to program mode, however
there are special relays (SPs) available in the CPU which will allow this error to be
read in ladder logic. The application program can then take the required action such
as entering the program mode or initiating an orderly shutdown. The following figure
shows an example of the failure indicators.

Program Control Information

V7752

V7753

V7754

SP47

0020

0021

0002

Desired module ID code

Current module ID code

Location of conflict

I/O Configuration Error

V7755 0252 Fatal error code

E252
NEW I/O CFG

Things to Check

I/O Diagnostics

M
aintenance

and Troubleshooting
M

aintenance
and Troubleshooting

9–15
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

When troubleshooting the DL series I/O modules there are a few facts you should be
aware of. These facts may assist you in quickly correcting an I/O problem.

� The output modules cannot detect shorted or open output points. If you
suspect one or more points on a output module to be faulty, you should
measure the voltage drop from the common to the suspect point.
Remember when using a Digital Volt Meter, leakage current from an
output device such as a triac or a transistor must be considered. A point
which is off may appear to be on if no load is connected to the the point.

� The I/O point status indicators on the modules are logic side indicators.
This means the LED which indicates the on or off status reflects the
status of the point in respect to the CPU. On an output module the
status indicators could be operating normally while the actual output
device (transistor, triac etc.) could be damaged. With an input module if
the indicator LED is on, the input circuitry should be operating properly.
To verify proper functionality check to see that the LED goes off when
the input signal is removed.

� Leakage current can be a problem when connecting field devices to I/O
modules. False input signals can be generated when the leakage
current of an output device is great enough to turn on the connected
input device. To correct this, install a resistor in parallel with the input or
output of the circuit. The value of this resistor will depend on the amount
of leakage current and the voltage applied but usually a 10K to 20K�
resistor will work. Insure the wattage rating of the resistor is correct for
your application.

� The easiest method to determine if a module has failed is to replace it if
you have a spare. However, if you suspect another device to have
caused the failure in the module, that device may cause the same
failure in the replacement module as well. As a point of caution, you
may want to check devices or power supplies connected to the failed
module before replacing it with a spare module.

Some Quick Steps

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–16
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

Output points can be set on or off in the DL205 series CPUs. In the DL240 and DL250
you can use AUX 59, Bit Override, to force a point even while the program is running.
However, this is not a recommended method to test the output points. If you want to
do an I/O check out independent of the application program, for either the DL230,
DL240, DL250–1 or DL260 follow the procedure below:

Step Action

1 Use a handheld programmer or DirectSOFT32 to communicate online
to the PLC.

2 Change to Program Mode.

3 Go to address 0.

4
Insert an “END” statement at address 0. (This will cause program
execution to occur only at address 0 and prevent the application pro-
gram from turning the I/O points on or off).

5 Change to Run Mode.

6 Use the programming device to set (turn) on or off the points you wish
to test.

7 When you finish testing I/O points delete the “END” statement at
address 0.

WARNING: Depending on your application, forcing I/O points may cause
unpredictable machine operation that can result in a risk of personal injury or
equipment damage. Make sure you have taken all appropriate safety precautions
prior to testing any I/O points.

BIT REF X
16P STATUS

From a clear display, use the following keystrokes

 Y 10 Y 0

Use the PREV or NEXT keys to select the Y data type

Y2X0

END

X2

X3X1 X4

X5 X7

END

Insert an END statement
at the beginning of the
program. This disables
the remainder of the
program.

STAT ENT

NEXT
0

A ENT

 Y 10 Y 0

Use arrow keys to select point, then use
ON and OFF to change the status

Y2 is now on

SHFT ON
INS

Testing Output
Points

Handheld
Programmer
Keystrokes Used
to Test an Output
Point

M
aintenance

and Troubleshooting
M

aintenance
and Troubleshooting

9–17
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

Noise Troubleshooting

Noise is one of the most difficult problems to diagnose. Electrical noise can enter a
system in many different ways and falls into one of two categories, conducted or
radiated. It may be difficult to determine how the noise is entering the system but the
corrective actions for either of the types of noise problems are similar.

� Conducted noise is when the electrical interference is introduced into
the system by way of an attached wire, panel connection ,etc. It may
enter through an I/O module, a power supply connection, the
communication ground connection, or the chassis ground connection.

� Radiated noise is when the electrical interference is introduced into the
system without a direct electrical connection, much in the same manner
as radio waves.

While electrical noise cannot be eliminated it can be reduced to a level that will not
affect the system.

� Most noise problems result from improper grounding of the system. A
good earth ground can be the single most effective way to correct noise
problems. If a ground is not available, install a ground rod as close to
the system as possible. Insure all ground wires are single point grounds
and are not daisy chained from one device to another. Ground metal
enclosures around the system. A loose wire is no more than a large
antenna waiting to introduce noise into the system; therefore, you
should tighten all connections in your system. Loose ground wires are
more susceptible to noise than the other wires in your system. Review
Chapter 2 Installation, Wiring, and Specifications if you have questions
regarding how to ground your system.

� Electrical noise can enter the system through the power source for the
CPU and I/O. Installing a isolation transformer for all AC sources can
correct this problem. DC sources should be well grounded good quality
supplies. Switching DC power supplies commonly generate more noise
than linear supplies.

� Separate input wiring from output wiring. Never run I/O wiring close to
high voltage wiring.

Electrical Noise
Problems

Reducing
Electrical Noise

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–18
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

Machine Startup and Program Troubleshooting

The DL205 CPUs provide several features to help you debug your program before
and during machine startup. This section discusses the following topics which can
be very helpful.

� Program Syntax Check

� Duplicate Reference Check

� Test Modes

� Special Instructions

� Run Time Edits

� Forcing I/O Points

Even though the Handheld Programmer and DirectSOFT32 provide error checking
during program entry, you may want to check a modified program. Both
programming devices offer a way to check the program syntax. For example, you
can use AUX 21, CHECK PROGRAM to check the program syntax from a Handheld
Programmer, or you can use the PLC Diagnostics menu option within
DirectSOFT32. This check will find a wide variety of programming errors. The
following example shows how to use the syntax check with a Handheld Programmer.

1:SYN 2:DUP REF
AUX 21 CHECK PRO

Use AUX 21 to perform syntax check

BUSY

Select syntax check (default selection)

MISSING END
$00050 E401

One of two displays will appear

?
NO SYNTAX ERROR

Error Display (example)

(You may not get the busy display
if the program is not very long.)

Syntax OK display

(shows location in question)

CLR
1

B
2

C AUX ENT

ENT

See the Error Codes Section for a complete listing of programming error codes. If
you get an error, press CLR and the Handheld will display the instruction where the
error occurred. Correct the problem and continue running the Syntax check until the
NO SYNTAX ERROR message appears.

Syntax Check

M
aintenance

and Troubleshooting
M

aintenance
and Troubleshooting

9–19
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

You can also check for multiple uses of the same output coil. Both programming
devices offer a way to check for this condition. For example, you can AUX 21,
CHECK PROGRAM to check for duplicate references from a Handheld
Programmer, or you can use the PLC Diagnostics menu option within
DirectSOFT32. The following example shows how to perform the duplicate
reference check with a Handheld Programmer.

DUP COIL REF
$00024 E471

One of two displays will appear

?
NO DUP REFS

Error Display (example)

Syntax OK display

(shows location in question)

1:SYN 2:DUP REF
AUX 21 CHECK PRO

Use AUX 21 to perform syntax check

BUSY

Select duplicate reference check

(You may not get the busy
display if the program is not
very long.)

CLR
1

B
2

C AUX ENT

ENT

If you get an error, press CLR and the Handheld will display the instruction where the
error occurred. Correct the problem and continue running the Duplicate Reference
check until no duplicate references are found.

NOTE: You can use the same coil in more than one location, especially in programs
using the Stage instructions and / or the OROUT instructions. The Duplicate
Reference check will find these outputs even though they may be used in an
acceptable fashion.

Duplicate
Reference Check

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–20
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

Test Mode allows the CPU to start in TEST-PGM mode, enter TEST-RUN mode, run
a fixed number of scans, and return to TEST-PGM mode. You can select from 1 to
65,525 scans. Test Mode also allows you to maintain output status while you switch
between Test-Program and Test-Run Modes. You can select Test Modes from either
the Handheld Programmer (by using the MODE key) or from DirectSOFT32 via a
PLC Modes menu option.
The primary benefit of using the TEST mode is to maintain certain outputs and other
parameters when the CPU transitions back to Test-program mode. For example,
you can use AUX 58 from the DL205 Handheld Programmer to configure the
individual outputs, CRs, etc. to hold their output state. Also, the CPU will maintain
timer and counter current values when it switches to TEST-PGM mode.

NOTE: You can only use DirectSOFT32 to specify the number of scans. This feature
is not supported on the Handheld Programmer. However, you can use the Handheld
to switch between Test Program and Test Run Modes.

With the Handheld, the actual mode entered when you first select Test Mode
depends on the mode of operation at the time you make the request. If the CPU is in
Run Mode mode, then TEST-RUN is available. If the mode is Program, then
TEST-PGM is available. Once you’ve selected TEST Mode, you can easily switch
between TEST-RUN and TEST-PGM. DirectSOFT32 provides more flexibility in
selecting the various modes with different menu options. The following example
shows how you can use the Handheld to select the Test Modes.

GO TO T–RUN MODE
MODE CHANGE

Use the MODE key to select TEST Modes (example assumes Run Mode)

CPU T–RUN
MODE CHANGE

Press ENT to confirm TEST-RUN Mode

MODE ENT

ENT

NEXT

GO TO T–PGM MODE
MODE CHANGE

You can return to Run Mode, enter Program Mode, or enter TEST-PGM
Mode by using the Mode Key

CLR

(Note, the TEST LED on the DL205
Handheld indicates the CPU is in
TEST Mode.)

MODE NEXT

CPU T–PGM
MODE CHANGE

Press ENT to confirm TEST-PGM Mode

ENT

ENTNEXT

(Note, the TEST LED on the DL205
Handheld indicates the CPU is in
TEST Mode.)

TEST-PGM and
TEST-RUN Modes

M
aintenance

and Troubleshooting
M

aintenance
and Troubleshooting

9–21
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

Test Displays: With the Handheld Programmer you also have a more detailed
display when you use TEST Mode. For some instructions, the TEST-RUN mode
display is more detailed than the status displays shown in RUN mode. The following
diagram shows an example of a Timer instruction display during TEST-RUN mode.

TMR T0 K1000
 S

TMR T0 K1000
 1425 S

Current Value

RUN Mode TEST-RUN Mode

Input to Timer
T0 Contact (S is off)

(is on)
T0 Contact (S is off)

(is on)

Holding Output States: The ability to hold output states is very useful, because it
allows you to maintain key system I/O points. In some cases you may need to modify
the program, but you do not want certain operations to stop. In normal Run Mode, the
outputs are turned off when you return to Program Mode. In TEST-RUN mode you
can set each individual output to either turn off, or, to hold its last output state on the
transition to TEST-PGM mode. You can use AUX 58 on the Handheld Programmer
to select the action for each individual output. This feature is also available via a
menu option within DirectSOFT32. The following diagram shows the differences
between RUN and TEST-RUN modes.

RUN Mode to PGM Mode

TEST-RUN to TEST-PGM

Y0X0

END

X2

X3X1 X4

Y1X10

Hold Y0 ON

Let Y1 turn
OFF

Status on final scan

Y0X0

END

X2

X3X1 X4

Y1X10

Outputs are
OFF

Y0X0

END

X2

X3X1 X4

Y1X10

Before you decide that Test Mode is the perfect choice, remember the DL205 CPUs
also allow you to edit the program during Run Mode. The primary difference between
the Test Modes and the Run Time Edit feature is you do not have to configure each
individual I/O point to hold the output status. When you use Run Time Edits, the CPU
automatically maintains all outputs in their current states while the program is being
updated.

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–22
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

There are several instructions that can be used to help you debug your program
during machine startup operations.

� END
� PAUSE
� STOP

END Instruction: If you need a way to quickly disable part of the program, insert an
END statement prior to the portion that should be disabled. When the CPU
encounters the END statement, it assumes it is the end of the program. The following
diagram shows an example.

New END disables X10 and Y1

Y0X0

END

X2

X3X1 X4

Y1X10

Normal Program

Y0X0

END

X2

X3X1 X4

Y1X10

END

PAUSE Instruction: This instruction provides a quick way to allow the inputs (or
other logic) to operate while disabling selected outputs. The output image register is
still updated, but the output status is not written to the modules. For example, you
could make this conditional by adding an input contact or CR to control the
instruction with a switch or a programming device. Or, you could add the instruction
without any conditions so the selected outputs would be disabled at all times.

PAUSE disables Y0 and Y1

Y0X0

END

X2

X3X1 X4

Y1X10

Normal Program

Y0X0

END

X2

X3X1 X4

Y1X10

PAUSE

Y0 – Y1

Special
Instructions

M
aintenance

and Troubleshooting
M

aintenance
and Troubleshooting

9–23
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

STOP Instruction: Sometimes during machine startup you need a way to quickly
turn off all the outputs and return to Program Mode. In addition to using the Test
Modes and AUX 58 (to configure each individual point), you can also use the STOP
instruction. When this instruction is executed the CPU automatically exits Run Mode
and enters Program Mode. Remember, all outputs are turned off during Program
Mode. The following diagram shows an example of a condition that returns the CPU
to Program Mode.

STOP puts CPU in Program Mode

Y0X0

END

X2

X3X1 X4

Y1X10

Normal Program

Y0X0

END

X2

X3X1 X4

Y1X10

X20
STOP

In the example shown above, you could trigger X20 which would execute the STOP
instruction. The CPU would enter Program Mode and all outputs would be turned off.

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–24
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

The DL205 CPUs allow you to make changes to the application program during Run
Mode. These edits are not “bumpless.” Instead, CPU scan is momentarily
interrupted (and the outputs are maintained in their current state) until the program
change is complete. This means if the output is off, it will remain off until the program
change is complete. If the output is on, it will remain on.

WARNING: Only authorized personnel fully familiar with all aspects of the
application should make changes to the program. Changes during Run Mode
become effective immediately. Make sure you thoroughly consider the impact of any
changes to minimize the risk of personal injury or damage to equipment. There are
some important operations sequence changes during Run Time Edits.
1. If there is a syntax error in the new instruction, the CPU will not enter the Run

Mode.
2. If you delete an output coil reference and the output was on at the time, the output

will remain on until it is forced off with a programming device.
3. Input point changes are not acknowledged during Run Time Edits. So, if you’re

using a high-speed operation and a critical input comes on, the CPU may not see
the change.

Not all instructions can be edited during a Run Time Edit session. The following list
shows the instructions that can be edited.

Mnemonic Description

TMR Timer

TMRF Fast timer

TMRA Accumulating timer

TMRAF Accumulating fast timer

CNT Counter

UDC Up / Down counter

SGCNT Stage counter

STR, STRN Store, Store not

AND, ANDN And, And not

OR, ORN Or, Or not

STRE, STRNE Store equal, Store not equal

ANDE, ANDNE And equal, And not equal

ORE, ORNE Or equal, Or not equal

STR, STRN Store greater than or equal
Store less than

AND, ANDN And greater than or equal
And less than

Mnemonic Description

OR, ORN Or greater than or equal
Or less than

LD Load data (constant)

LDD Load data double (constant)

ADDD Add data double (constant)

SUBD Subtract data double (constant)

MUL Multiply (constant)

DIV Divide (constant)

CMPD Compare accumulator (constant)

ANDD And accumulator (constant)

ORD Or accumulator (constant)

XORD Exclusive or accumulator (constant)

LDF Load discrete points to accumulator

OUTF Output accumulator to discrete points

SHFR Shift accumulator right

SHFL Shift accumulator left

NCON Numeric constant

Run Time Edits

M
aintenance

and Troubleshooting
M

aintenance
and Troubleshooting

9–25
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

Use the program logic shown to describe
how this process works. In the example,
change X0 to C10. Note, the example as-
sumes you have already placed the CPU
in Run Mode.

X0 X1 Y0
OUT

C0

RUN TIME EDIT?
MODE CHANGE

Use the MODE key to select Run Time Edits

RUNTIME EDITS
MODE CHANGE

Press ENT to confirm the Run Time Edits

MODE ENT

ENT

NEXT

$00000 STR X0

Find the instruction you want to change (X0)

Press the arrow key to move to the X. Then enter the new contact (C10).

SHFT
SET

X
0

A SHFT FD REF
FIND

(Note, the RUN LED on the DL205
Handheld starts flashing to indicate
Run Time Edits are enabled.)

STR C10
RUNTIME EDIT?

SHFT
1

B
2

C
0

A ENT

OR C0

Press ENT to confirm the change

ENT (Note, once you press ENT, the next
address is displayed.

NEXT

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–26
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

There are many times, especially during machine startup and troubleshooting,
where you need the capability to force an I/O point to be either on or off. Before you
use a programming device to force any data type it is important to understand how
the DL205 CPUs process the forcing requests.

WARNING: Only authorized personnel fully familiar with all aspects of the
application should make changes to the program. Make sure you thoroughly
consider the impact of any changes to minimize the risk of personal injury or damage
to equipment.

There are two types of forcing available with the DL205 CPUs. (Chapter 3 provides a
detailed description of how the CPU processes each type of forcing request.)

� Regular Forcing — This type of forcing can temporarily change the
status of a discrete bit. For example, you may want to force an input on,
even though it is really off. This allows you to change the point status
that was stored in the image register. This value will be valid until the
image register location is written to during the next scan. This is
primarily useful during testing situations when you need to force a bit on
to trigger another event.

� Bit Override — (DL240, DL250–1 or DL260) Bit override can be
enabled on a point-by-point basis by using AUX 59 from the Handheld
Programmer or by a menu option in DirectSOFT32. You can use Bit
Override with X, Y, C, T, CT, and S data types. Bit override basically
disables any changes to the discrete point by the CPU. For example, if
you enable bit override for X1, and X1 is off at the time, the CPU will not
change the state of X1. This means that even if X1 comes on, the CPU
will not acknowledge the change. Therefore, if you used X1 in the
program, it would always be evaluated as “off” in this case. If X1 was on
when the bit override was enabled, then X1 would always be evaluated
as “on”.

There is an advantage available when you use the bit override feature. The regular
forcing is not disabled because the bit override is enabled. For example, if you
enabled the Bit Override for Y0 and it was off at the time, the CPU would not change
the state of Y0. However, you can still use a programming device to change the
status. If you use the programming device to force Y0 on, it will remain on and the
CPU will not change the state of Y0. If you then force Y0 off, the CPU will maintain Y0
as off. The CPU will never update the point with the results from the application
program or from the I/O update until the bit override is removed from the point.

Forcing I/O Points

M
aintenance

and Troubleshooting
M

aintenance
and Troubleshooting

9–27
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

The following diagrams show how the bit override works for both input and output points. The example uses
a simple rung, but the concepts are similar for any type of bit memory.

X0 at input

X0 in

Y0 in

OUT
Y0X0

Program Rung

module

image register

image register

Override holds
previous state and disables
image register update by CPU

X0
override enabled

The following diagram shows how the bit override works for an output point. Notice the bit override
maintains the output in the current state. If the output is on when the bit override is enabled, then the output
stays on. If it is off, then the output stays off.

X0 at

Y0 in

Y0 at

OUT
Y0X0

Program Rung

input mdoule

image register

output module

Override holds
previous state and disables
image register update by CPU

Y0
override enabled

The following diagram shows how you can use a programming device in combination with the bit override to
change the status of the point. Remember, bit override only disables CPU changes. You can still use a
programming device to force the status of the point. Plus, since bit override maintains the current status, this
enables true forcing. The example shown is for an output point, but you can also use the other bit data types.

Y0 force
from programmer

X0 at

Y0 in

Y0 at

OUT
Y0X0

Program Rung

input mdoule

image register

output module

The force operation from the
programming device can still
change the point status.

Y0
override enabled

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–28
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

The following diagrams show a brief
example of how you could use the DL205
Handheld Programmer to force an I/O
point. Remember, if you are using the Bit
Override feature, the CPU will retain the
forced value until you disable the Bit
Override or until you remove the force.
The image register will not be updated
with the status from the input module.
Also, the solution from the application
program will not be used to update the
output image register. The example
assumes you have already placed the
CPU into Run Mode.

X0 Y0
OUT

C0

Use arrow keys to select point, then use
ON and OFF to change the status

SHFT ON
INS

 0 0 Y 1 Y

BIT REF X
16P STATUS

From a clear display, use the following keystrokes

Use the PREV or NEXT keys to select the Y data type. (Once the Y
appears, press 0 to start at Y0.)

STAT ENT

NEXT
0

A ENT

Y2 is now on

 0 0 Y 1 Y

Y10
BIT FORCE

From a clear display, use the following
keystrokes to force Y10 ON Solid fill indicates point is on.

MLS
Y

1
B

0
ASHFT SHFT ON

INS

Y10
BIT FORCE

From a clear display, use the following
keystrokes to force Y10 OFF No fill indicates point is off.

MLS
Y

1
B

0
ASHFT SHFT OFF

DEL

Regular Forcing
with Direct Access

M
aintenance

and Troubleshooting
M

aintenance
and Troubleshooting

9–29
Maintenance and Troubleshooting

DL205 User Manual, 3rd Ed. 06/02

SET Y 10
BIT FORCE

From a clear display, use the following keystrokes to
turn on the override bit for Y10.

Solid fill indicates point is on.

1
B

0
A

SET
X SHFT ON

INS

Small box indicates override bit is on.

RST Y 10
BIT FORCE

From a clear display, use the following
keystrokes to turn off the override bit
for Y10. Solid fill indicates point is on.

1
B

0
A SHFT ON

INS

Small box is not present when override bit is off.

RST
S

Note, at this point you can use the PREV and NEXT keys to move to adjacent
memory locations and use the SHFT ON keys to set the override bit on.

Like the example above, you can use the PREV and NEXT keys to move to
adjacent memory locations and use the SHFT OFF keys to set the override bit
off.

 0 0

Override bit indicators are also shown on the handheld programmer status
display. Below are the keystrokes to call the status display for Y10 – Y20.

From a clear display, use the following keystrokes to
display the status of Y10 – Y20.

STAT ENT NEXT
1

B
0

A ENT Y 2 Y 1

Override bit is on
Point is on

Bit Override
Forcing

230

�

240

�

250–1

�

260

�

Bit Override
Indicators

1A
Auxiliary Functions

In This Appendix. . . .
— Introduction
— AUX 2* — RLL Operations
— AUX 3* — V-memory Operations
— AUX 4* — I/O Configuration
— AUX 5* — CPU Configuration
— AUX 6* — Handheld Programmer Configuration
— AUX 7* — EEPROM Operations
— AUX 8* — Password Operations

A
pp

en
di

x
A

A
ux

ili
ar

y
F

un
ct

io
ns

Auxiliary Functions
A–2

DL205 User Manual, 3rd Ed. 06/02

Introduction
Many CPU setup tasks involve the use of Auxiliary (AUX) Functions. The AUX
Functions perform many different operations, ranging from clearing ladder memory,
displaying the scan time, copying programs to EEPROM in the handheld
programmer, etc. They are divided into categories that affect different system
parameters. You can access the AUX Functions from DirectSOFT32 or from the
DL205 Handheld Programmer. The manuals for those products provide
step-by-step procedures for accessing the AUX Functions. Some of these AUX
Functions are designed specifically for the Handheld Programmer setup, so they will
not be needed (or available) with the DirectSOFT32 package. Even though this
Appendix provides many examples of how the AUX functions operate, you should
supplement this information with the documentation for your choice of programming
device. Note, the Handheld Programmer may have additional AUX functions that
are not supported with the DL205 CPUs.

AUX Function and Descrip-
tion

230 240 250–1 260

AUX 2* — RLL Operations

21 Check Program � � � �

22 Change Reference � � � �

23 Clear Ladder Range � � � �

24 Clear All Ladders � � � �

AUX 3* — V-Memory Operations

31 Clear V Memory � � � �

AUX 4* — I/O Configuration

41 Show I/O Configuration � � � �

42 I/O Diagnostics � � � �

44 Power-up I/O Configura-
tion Check

� � � �

45 Select Configuration � � � �

46 Configure I/O � � � �

AUX 5* — CPU Configuration

51 Modify Program Name � � � �

52 Display / Change Calen-
dar

� � � �

53 Display Scan Time � � � �

54 Initialize Scratchpad � � � �

55 Set Watchdog Timer � � � �

56 Set CPU Network Ad-
dress

X � � �

57 Set Retentive Ranges � � � �

58 Test Operations � � � �

59 Bit Override X � � �

5B Counter Interface Con-
fig.

� � � �

5C Display Error History X � � �

AUX Function and Description 230 240 250–1 260 HPP

AUX 6* — Handheld Programmer Configuration

61 Show Revision Numbers � � � � –

62 Beeper On / Off � � � � �

65 Run Self Diagnostics � � � � �

AUX 7* — EEPROM Operations

71 Copy CPU memory to
HPP EEPROM

� � � � �

72 Write HPP EEPROM to
CPU

� � � � �

73 Compare CPU to
HPP EEPROM

� � � � �

74 Blank Check (HPP EE-
PROM)

� � � � �

75 Erase HPP EEPROM � � � � �

76 Show EEPROM Type
(CPU and HPP)

� � � � �

AUX 8* — Password Operations

81 Modify Password � � � � –

82 Unlock CPU � � � � –

83 Lock CPU � � � � –

� supported
� not supported

– not applicable

What are Auxiliary
Functions?

A
ppendix A

A
uxiliary F

unctions
A–3

Auxiliary Functions

DL205 User Manual, 3rd Ed. 06/02

DirectSOFT32 provides various menu options during both online and offline
programming. Some of the AUX functions are only available during online
programming, some only during offline programming, and some during both online
and offline programming. The following diagram shows an example of the PLC
operations menu available within DirectSOFT32.

Menu Options

You can also access the AUX functions by using a Handheld Programmer. Plus,
remember some of the AUX functions are only available from the Handheld.
Sometimes the AUX name or description cannot fit on one display. If you want to see
the complete description, press the arrow keys to scroll left and right. Also,
depending on the current display, you may have to press CLR more than once.

AUX 2* RLL OPERATIONS
AUX FUNCTION SELECTION

Use NXT or PREV to cycle through the menus

AUX 3* V OPERATIONS
AUX FUNCTION SELECTION

Press ENT to select sub-menus

AUX 31 CLR V MEMORY
AUX 3* V OPERATIONS

CLR AUX

NEXT

ENT

You can also enter the exact AUX number to go straight to the sub-menu.

AUX 31 CLR V MEMORY
AUX 3* V OPERATIONS

Enter the AUX number directly

CLR
3

D
1

B AUX

Accessing AUX
Functions via
DirectSOFT32

Accessing AUX
Functions via the
Handheld
Programmer

A
pp

en
di

x
A

A
ux

ili
ar

y
F

un
ct

io
ns

Auxiliary Functions
A–4

DL205 User Manual, 3rd Ed. 06/02

AUX 2* — RLL Operations

There are four AUX functions available that you can use to perform various
operations on the control program.

� AUX 21 — Check Program
� AUX 22 — Change Reference
� AUX 23 — Clear Ladder Range
� AUX 24 — Clear Ladders

Both the Handheld and DirectSOFT32 automatically check for errors during
program entry. However, there may be occasions when you want to check a program
that has already been in the CPU. There are two types of checks available:

� Syntax
� Duplicate References

The Syntax check will find a wide variety of programming errors, such as missing
END statements, incomplete FOR/NEXT loops, etc. If you perform this check and
get an error, see Appendix B for a complete listing of programming error codes.
Correct the problem and then continue running the Syntax check until the message
“NO SYNTAX ERROR appears.
Use the Duplicate Reference check to verify you have not used the same output coil
reference more than once. Note, this AUX function will also find the same outputs
even if they have been used with the OROUT instruction, which is perfectly
acceptable.
This AUX function is available on the PLC Diagnostics sub-menu from within
DirectSOFT32.

There will be times when you need to change an I/O address reference or control
relay reference. AUX 22 allows you to quickly and easily change all occurrences,
(within an address range), of a specific instruction. For example, you can replace
every instance of X5 with X10.

There have been many times when you take existing programs and add or remove
certain portions to solve new application problems. By using AUX 23 you can select
and delete a portion of the program. DirectSOFT32 does not have a menu option for
this AUX function, but you can select the appropriate portion of the program and cut it
with the editing tools.

AUX 24 clears the entire program from CPU memory. Before you enter a new
program, you should always clear ladder memory. This AUX function is available on
the PLC/Clear PLC sub-menu within DirectSOFT32.

AUX 3* — V-memory Operations

� AUX 31 — Clear V memory
AUX 31 clears all the information from the V-memory locations available for general
use. This AUX function is available on the PLC/Clear PLC sub-menu within
DirectSOFT32.

AUX 21, 22, 23
and 24

AUX 21
Check Program

AUX 22
Change Reference

AUX 23
Clear Ladder
Range

AUX 24
Clear Ladders

AUX 31
Clear V Memory

A
ppendix A

A
uxiliary F

unctions
A–5

Auxiliary Functions

DL205 User Manual, 3rd Ed. 06/02

AUX 4* — I/O Configuration

There are several AUX functions available that you can use to setup, view, or change
the I/O configuration.

� AUX 41 — Show I/O Configuration
� AUX 42 — I/O Diagnostics
� AUX 43 — not used in DL205
� AUX 44 — Power-up Configuration Check
� AUX 45 — Select Configuration
� AUX 46 — Configure I/O

This AUX function allows you to display the current I/O configuration. With the
Handheld Programmer, you can scroll through each base and I/O slot to view the
complete configuration. The configuration shows the type of module installed in
each slot. DirectSOFT32 provides the same information, but it is much easier to
view because you can view a complete base on one screen.

This is one of the most useful AUX functions available in the DL205 system. This
AUX function will show you the exact base and slot location of any I/O module error
that has occurred. This feature is also available within DirectSOFT32 under the
PLC/Diagnostics sub-menu.

By selecting this feature you can quickly detect any changes that may have occurred
while the power was disconnected. For example, if someone placed an output
module in a slot that previously held an input module, the configuration check would
detect the change.
If the system detects a change in the I/O configuration at power-up, an error code
E252 NEW I/O CONFIGURATION will be generated. You can use AUX 42 to
determine the exact base and slot location where the change occurred.

WARNING: You should always correct any I/O configuration errors before you place
the CPU into RUN mode. Uncorrected errors can cause unpredictable machine
operation that can result in a risk of personal injury or damage to equipment.

This feature is also available within DirectSOFT32 under the PLC/Setup sub-menu.

Even though the CPU can automatically detect configuration changes, you may
actually want the new I/O configuration to be used. For example, you may have
intentionally changed a module to use with a new program. You can use AUX 45 to
select the new configuration, or, keep the existing configuration that is stored in
memory. This feature is also available within DirectSOFT32 from the PLC/Setup
sub-menu.

WARNING: Make sure the I/O configuration being selected will work properly with
the CPU program. You should always correct any I/O configuration errors before you
place the CPU into RUN mode. Uncorrected errors can cause unpredictable
machine operation that can result in a risk of personal injury or damage to
equipment.

AUX 41 – 46

AUX 41
Show I/O
Configuration

AUX 42
I/O Diagnostics

AUX 44
Power-up
Configuration
Check

AUX 45
Select
Configuration

A
pp

en
di

x
A

A
ux

ili
ar

y
F

un
ct

io
ns

Auxiliary Functions
A–6

DL205 User Manual, 3rd Ed. 06/02

You will probably never need to use this feature, but the DL250–1 and DL260 CPU
allows you to use AUX 46 to manually assign I/O addresses for any or all I/O slots on
the local or expansion bases. It is generally much easier to do the I/O configuration
operations from within DirectSOFT32. The software package provides a really nice
screen that is available from the PLC/Configure I/O sub-menu.
This feature is useful if you have a standard configuration you must sometimes
change slightly to accommodate special requests. For example, you may require
two adjacent input modules to have addresses starting at X10 and X200
respectively.
In automatic configuration, the addresses were assigned on 8-point boundaries.
Manual configuration assumes that all modules are at least 16 points, so you can
only assign addresses that are a multiple of 20 (octal). For example, X30 and Y50
would not be valid starting addresses for a module. X20 and Y40 are valid examples
of starting addresses in a manual configuration. This does not mean you can only
use 16 or 32 point modules with manual configuration. You can use 8 point modules,
but 16 addresses will be assigned and 8 of them are unused.

WARNING: If you manually configure an I/O slot, the I/O addressing for the other
modules will change. This is because the DL205 products do not allow you to assign
duplicate I/O addresses. You should always correct any I/O configuration errors
before you place the CPU into RUN mode. Uncorrected errors can cause
unpredictable machine operation that can result in a risk of personal injury or
damage to equipment.

Once you have manually configured the addresses for an I/O slot, the system will
automatically retain these values even after a power cycle. You can remove any
manual configuration changes by simply performing an automatic configuration.

AUX 46
I/O Configuration

A
ppendix A

A
uxiliary F

unctions
A–7

Auxiliary Functions

DL205 User Manual, 3rd Ed. 06/02

AUX 5* — CPU Configuration

There are several AUX functions available that you can use to setup, view, or change
the CPU configuration.

� AUX 51 — Modify Program Name
� AUX 52 — Display / Change Calendar
� AUX 53 — Display Scan Time
� AUX 54 — Initialize Scratchpad
� AUX 55 — Set Watchdog Timer
� AUX 56 — CPU Network Address
� AUX 57 — Set Retentive Ranges
� AUX 58 — Test Operations
� AUX 59 — Bit Override
� AUX 5B — Counter Interface Configuration
� AUX 5C — Display Error / Message History

The DL205 products can use a program name for the CPU program or a program
stored on EEPROM in the Handheld Programmer. Note, you cannot have multiple
programs stored on the EEPROM. The program name can be up to eight characters
in length and can use any of the available characters (A–Z, 0–9). AUX 51 allows you
to enter a program name. You can also perform this operation from within
DirectSOFT32 by using the PLC/Setup sub-menu. Once you’ve entered a program
name, you can only clear the name by using AUX 54 to reset the system memory.
Make sure you understand the possible ramifications of AUX 54 before you use it!

The DL240, DL250–1and the DL260 CPUs have a clock and calendar feature. If you
are using this, you can use the Handheld and AUX 52 to set the time and date. The
following format is used.

� Date — Year, Month, Date, Day of week (0 – 6, Sunday thru Saturday)
� Time — 24 hour format, Hours, Minutes, Seconds

You can use the AUX function to change any component of the date or time.
However, the CPU will not automatically correct any discrepancy between the date
and the day of the week. For example, if you change the date to the 15th of the month
and the 15th is on a Thursday, you will also have to change the day of the week
(unless the CPU already shows the date as Thursday).

You can also perform this operation from within DirectSOFT32 by using the
PLC/Setup sub-menu.

AUX 53 displays the current, minimum, and maximum scan times. The minimum
and maximum times are the ones that have occurred since the last Program Mode to
Run Mode transition. You can also perform this operation from within DirectSOFT32
by using the PLC/Diagnostics sub-menu.

AUX 51 – 58

AUX 51
Modify Program
Name

AUX 52
Display /Change
Calendar

AUX 53
Display Scan Time

A
pp

en
di

x
A

A
ux

ili
ar

y
F

un
ct

io
ns

Auxiliary Functions
A–8

DL205 User Manual, 3rd Ed. 06/02

The DL205 CPUs maintain system parameters in a memory area often referred to as
the “scratchpad”. In some cases, you may make changes to the system setup that
will be stored in system memory. For example, if you specify a range of Control
Relays (CRs) as retentive, these changes are stored.

NOTE: You may never have to use this feature unless you have made changes that
affect system memory. Usually, you’ll only need to initialize the system memory if you
are changing programs and the old program required a special system setup. You
can usually change from program to program without ever initializing system
memory.

AUX 54 resets the system memory to the default values. You can also perform this
operation from within DirectSOFT32 by using the PLC/Setup sub-menu.

The DL205 CPUs have a “watchdog” timer that is used to monitor the scan time. The
default value set from the factory is 200 ms. If the scan time exceeds the watchdog
time limit, the CPU automatically leaves RUN mode and enters PGM mode. The
Handheld displays the following message E003 S/W TIMEOUT when the scan
overrun occurs.
Use AUX 55 to increase or decrease the watchdog timer value. You can also perform
this operation from within DirectSOFT32 by using the PLC/Setup sub-menu.

Since the DL240, DL250–1 and DL260 CPUs have an additional communication
port, you can use the Handheld to set the network address for the port and the port
communication parameters. The default settings are:

� Station address 1
� HEX mode
� Odd parity

You can use this port with either the Handheld Programmer, DirectSOFT32, or, as a
DirectNET communication port. The DirectNET Manual provides additional
information about communication settings required for network operation.

NOTE: You will only need to use this procedure if you have the bottom port
connected to a network. Otherwise, the default settings will work fine.

Use AUX 56 to set the network address and communication parameters. You can
also perform this operation from within DirectSOFT32 by using the PLC/Setup
sub-menu.

AUX 54
Initialize
Scratchpad

AUX 55
Set Watchdog
Timer

AUX 56
CPU Network
Address

A
ppendix A

A
uxiliary F

unctions
A–9

Auxiliary Functions

DL205 User Manual, 3rd Ed. 06/02

The DL205 CPUs provide certain ranges of retentive memory by default. The default
ranges are suitable for many applications, but you can change them if your
application requires additional retentive ranges or no retentive ranges at all. The
default settings are:

Memory Area
DL230 DL240 DL250–1 DL260

Memory Area
Default Range Avail. Range Default Range Avail. Range Default Range Avail. Range Default Range Avail. Range

Control Relays C300 – C377 C0 – C377 C300 – C377 C0 – C377 C1000 – C1777 C0 – C1777 C1000 – C1777 C0 – C3777

V Memory V2000 – V7777 V0 – V7777 V2000 – V7777 V0 – V7777 V1400 – V3777 V0 – V17777 V1400 – V3777 V0 – V37777

Timers None by default T0 – T77 None by default T0 – T177 None by default T0 – T377 None by default T0 – T377

Counters CT0 – CT77 CT0 – CT77 CT0 – CT177 CT0 – CT177 CT0 – CT177 CT0 – CT177 CT0 – CT177 CT0 – CT377

Stages None by default S0 – S377 None by default S0 – S777 None by default S0 – S1777 None by default S0 – S1777

Use AUX 57 to change the retentive ranges. You can also perform this operation
from within DirectSOFT32 by using the PLC/Setup sub-menu.

WARNING: The DL205 CPUs do not come with a battery. The super capacitor will
retain the values in the event of a power loss, but only up to 1 week. The retention
time may be less in some conditions. If the retentive ranges are important for your
application, make sure you obtain the optional battery.

In normal Run Mode, the outputs are turned off when you return to Program Mode. In
TEST-RUN mode you can set each individual output to either turn off, or, hold its last
output state on the transition to TEST-PGM mode. The ability to hold the output
states is especially useful, since It allows you to maintain key system I/O points for
examination. See Chapter 9 for a description of the Test Modes.
You can use AUX 58 to configure each individual output. You can also perform this
operation from within DirectSOFT32 by using the PLC/Setup sub-menu.

AUX 57
Set Retentive
Ranges

AUX 58
Test Operations

A
pp

en
di

x
A

A
ux

ili
ar

y
F

un
ct

io
ns

Auxiliary Functions
A–10

DL205 User Manual, 3rd Ed. 06/02

Bit override can be enabled on a point-by-point basis by using AUX 59 from the
Handheld Programmer or, by a menu option from within DirectSOFT32. Bit override
basically disables any changes to the discrete point by the CPU. For example, if you
enable bit override for X1, and X1 is off at the time, then the CPU will not change the
state of X1. This means that even if X1 comes on, the CPU will not acknowledge the
change. So, if you used X1 in the program, it would always be evaluated as “off” in
this case. Of course, if X1 was on when the bit override was enabled, then X1 would
always be evaluated as “on”.

NOTE: DirectNet protocol does not support single bit write operations.

There is an advantage available when you use the bit override feature. The regular
forcing is not disabled because the bit override is enabled. For example, if you
enabled the Bit Override for Y0 and it was off at the time, then the CPU would not
change the state of Y0. However, you can still use a programming device to change
the status. Now, if you use the programming device to force Y0 on, it will remain on
and the CPU will not change the state of Y0. If you then force Y0 off, the CPU will
maintain Y0 as off. The CPU will never update the point with the results from the
application program or from the I/O update until the bit override is removed from the
point.
The following diagram shows a brief overview of the bit override feature. Notice the
CPU does not update the Image Register when bit override is enabled.

Input Update

Result of Pro-
gramSolution

OFF

Image Register (example)

Y1Y2...Y128
ONON...OFF

C0C1C2...C377
OFFOFFON...OFF

Y0
OFF

X1X2...X128
ONON...OFF

X0

Bit Override OFF

Force from
Programmer

Input Update

Result of Pro-
gramSolution

Bit Override ON

Force from
Programmer

AUX 5B is used with the DL205 Counter Interface module to select the module
configuration. You can choose the type of counter, set the counter parameters, etc.
See the DL205 Counter Interface Module manual for a complete description of how
to select the various counter features.

AUX 59
Bit Override

AUX 5B
Counter Interface
Configuration

A
ppendix A

A
uxiliary F

unctions
A–11

Auxiliary Functions

DL205 User Manual, 3rd Ed. 06/02

The DL240, DL250–1 and DL260 CPU will automatically log any system error codes
and custom messages created with the FAULT instructions. The CPU logs the error
code, date, and time the error occurred. There are two separate tables that store this
information.

� Error Code Table – the system logs up to 32 errors in the table. When
an error occurs, the errors already on the table are pushed down and
the most recent error is loaded into the top slot. If the table is full when
an error occurs, the oldest error is pushed out (erased) of the table.

� Message Table – the system logs up to 16 messages in this table. When
a message is triggered, the messages already stored in the table are
pushed down and the most recent message is loaded into the top slot. If
the table is full when an error occurs, the oldest message is pushed out
(erased) of the table.

The following diagram shows an example of an error table for messages.

Date Time Message

1993–05–26 08:41:51:11 * Conveyor–2 stopped

1993–04–30 17:01:11:56 * Conveyor–1 stopped

1993–04–30 17:01:11:12 * Limit SW1 failed

1993–04–28 03:25:14:31 * Saw Jam Detect

You can use AUX Function 5C to show the error codes or messages. You can also
view the errors and messages from within DirectSOFT32 by using the
PLC/Diagnostics sub-menu.

AUX 5C
Display Error
History

A
pp

en
di

x
A

A
ux

ili
ar

y
F

un
ct

io
ns

Auxiliary Functions
A–12

DL205 User Manual, 3rd Ed. 06/02

AUX 6* — Handheld Programmer Configuration

There are several AUX functions available that you can use to setup, view, or change
the Handheld Programmer configuration.

� AUX 61 — Show Revision Numbers
� AUX 62 — Beeper On / Off
� AUX 65 — Run Self Diagnostics

As with most industrial control products, there are cases when additional features
and enhancements are made. Sometimes these new features only work with certain
releases of firmware. By using AUX 61 you can quickly view the CPU and Handheld
Programmer firmware revision numbers. This information (for the CPU) is also
available from within DirectSOFT32 from the PLC/Diagnostics sub-menu.

The Handheld has a beeper that provides confirmation of keystrokes. You can use
Auxiliary (AUX) Function 62 to turn off the beeper.

If you think the Handheld Programmer is not operating correctly, you can use AUX 65
to run a self diagnostics program. You can check the following items.

� Keypad
� Display
� LEDs and Backlight
� Handheld Programmer EEPROM check

AUX 61, 62 and 65

AUX 61
Show Revision
Numbers

AUX 62
Beeper On / Off

AUX 65
Run Self
Diagnostics

A
ppendix A

A
uxiliary F

unctions
A–13

Auxiliary Functions

DL205 User Manual, 3rd Ed. 06/02

AUX 7* — EEPROM Operations

There are several AUX functions available you can use to move programs between
the CPU memory and an optional EEPROM installed in the Handheld Programmer.

� AUX 71 — Read from CPU memory to HPP EEPROM
� AUX 72 — Write HPP EEPROM to CPU
� AUX 73 — Compare CPU to HPP EEPROM
� AUX 74 — Blank Check (HPP EEPROM)
� AUX 75 — Erase HPP EEPROM
� AUX 76 — Show EEPROM Type (CPU and HPP)

Many of these AUX functions allow you to copy different areas of memory to and
from the CPU and handheld programmer. The following table shows the areas that
may be mentioned.

Option and Memory Type DL240 Default Range DL230 Default Range

1:PGM — Program $00000 – $02559 $00000 – $02047

2:V — V memory $00000 – $4777 $00000 – $04777

3:SYS — System Non-selectable copies system parameters

4:etc — Program, System
and non-volatile V-memory

Non-selectable Non-selectable

AUX 71 copies information from the CPU memory to an EEPROM installed in the
Handheld Programmer.
You can copy different portions of EEPROM (HP) memory to the CPU memory as
shown in the previous table. The amount of data you can copy depends on the CPU.

AUX 72 copies information from an EEPROM installed in the Handheld Programmer
to the CPU. You can copy different types of information from CPU memory as shown
in the previous table.

AUX 73 compares the program in the Handheld programmer (EEPROM) with the
CPU program. You can compare different types of information as shown previously.
There is also an option called “etc.” that allows you to check all of the areas
sequentially without re-executing the AUX function every time.

AUX 74 allows you to check the EEPROM in the handheld programmer to make sure
it is blank. It’s a good idea to use this function anytime you start to copy an entire
program to an EEPROM in the handheld programmer.

AUX 75 allows you to clear all data in the EEPROM in the handheld programmer.
You should use this AUX function before you copy a program from the CPU.

You can use AUX 76 to quickly determine what size EEPROM is installed in the CPU
and Handheld Programmer. The DL230 and DL240 use different size EEPROMs.
See Chapter 3 for additional information.

AUX 71 – 76

Transferrable
Memory Areas

AUX 71
CPU to HPP
EEPROM

AUX 72
HPP EEPROM to
CPU

AUX 73
Compare HPP
EEPROM to CPU

AUX 74
HPP EEPROM
Blank Check

AUX 75
Erase HPP
EEPROM

AUX 76
Show EEPROM
Type

A
pp

en
di

x
A

A
ux

ili
ar

y
F

un
ct

io
ns

Auxiliary Functions
A–14

DL205 User Manual, 3rd Ed. 06/02

AUX 8* — Password Operations

There are several AUX functions available that you can use to modify or enable the
CPU password. You can use these features during on-line communications with the
CPU, or, you can also use them with an EEPROM installed in the Handheld
Programmer during off-line operation. This will allow you to develop a program in the
Handheld Programmer and include password protection.

� AUX 81 — Modify Password
� AUX 82 — Unlock CPU
� AUX 83 — Lock CPU

You can use AUX 81 to provide an extra measure of protection by entering a
password that prevents unauthorized machine operations. The password must be
an eight-character numeric (0–9) code. Once you’ve entered a password, you can
remove it by entering all zeros (00000000). This is the default from the factory.
Once you’ve entered a password, you can lock the CPU against access. There are
two ways to lock the CPU with the Handheld Programmer.

� The CPU is always locked after a power cycle (if a password is present).
� You can use AUX 83 and AUX 84 to lock and unlock the CPU.

You can also enter or modify a password from within DirectSOFT32 by using the
PLC/Password sub-menu. This feature works slightly differently in DirectSOFT32.
Once you’ve entered a password, the CPU is automatically locked when you exit the
software package. It will also be locked if the CPU is power cycled.

WARNING: Make sure you remember the password before you lock the CPU. Once
the CPU is locked you cannot view, change, or erase the password. If you do not
remember the password, you have to return the CPU to the factory for password
removal.

NOTE: The D2–240, DL250–1 and D2–260 CPUs support multi-level password
protection of the ladder program. This allows password protection while not locking
the communication port to an operator interface. The multi-level password can be
invoked by creating a password with an upper case “A” followed by seven numeric
characters (e.g. A1234567).

AUX 82 can be used to unlock a CPU that has been password protected.
DirectSOFT32 will automatically ask you to enter the password if you attempt to
communicate with a CPU that contains a password.

AUX 83 can be used to lock a CPU that contains a password. Once the CPU is
locked, you will have to enter a password to gain access. Remember, this is not
necessary with DirectSOFT32 since the CPU is automatically locked whenever you
exit the software package.

AUX 81 – 83

AUX 81
Modify Password

AUX 82
Unlock CPU

AUX 83
Lock CPU

1B
DL205 Error Codes

In This Appendix. . . .
— Error Code Table

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
E

rr
or

 C
od

es
A

pp
en

di
x

C
E

rr
or

 C
od

es
B–2

DL205 Error Codes

DL205 User Manual, 3rd Ed. 06/02

DL205 Error Code Description

E003
SOFTWARE
TIME-OUT

If the program scan time exceeds the time allotted to the watchdog timer, this
error will occur. SP51 will be on and the error code will be stored in V7755. To
correct this problem add RSTWT instructions in FOR NEXT loops and
subroutines or use AUX 55 to extend the time allotted to the watchdog timer.

E041
CPU BATTERY LOW

The CPU battery is low and should be replaced. SP43 will be on and the error
code will be stored in V7757.

E099
PROGRAM
MEMORY
EXCEEDED

If the compiled program length exceeds the amount of available CPU RAM
this error will occur. SP52 will be on and the error code will be stored in
V7755. Reduce the size of the application program.

E104
WRITE FAILED

A write to the CPU was not successful. Disconnect the power, remove the
CPU, and make sure the EEPROM is not write protected. If the EEPROM is
not write protected, make sure the EEPROM is installed correctly. If both
conditions are OK, replace the CPU.

E151
BAD COMMAND

A parity error has occurred in the application program. SP44 will be on and
the error code will be stored in V7755. This problem may possibly be due to
electrical noise. Clear the memory and download the program again. Correct
any grounding problems. If the error returns replace the EEPROM or the
CPU.

E155
RAM FAILURE

A checksum error has occurred in the system RAM. SP44 will be on and the
error code will be stored in V7755. This problem may possibly be due to a low
battery, electrical noise or a CPU RAM failure. Clear the memory and
download the program again. Correct any grounding problems. If the error
returns replace the CPU.

E202
MISSING I/O
MODULE

An I/O module has failed to communicate with the CPU or is missing from the
base. SP45 will be on and the error code will be stored in V7756. Run AUX42
to determine the slot and base location of the module reporting the error.

E210
POWER FAULT

A short duration power drop-out occurred on the main power line supplying
power to the base.

E250
COMMUNICATION
FAILURE IN THE I/O
CHAIN

A failure has occurred in the local I/O system. The problem could be in the
base I/O bus or the base power supply. SP45 will be on and the error code
will be stored in V7755. Run AUX42 to determine the base location reporting
the error.

E252
NEW I/O CFG

This error occurs when the auto configuration check is turned on in the CPU
and the actual I/O configuration has changed either by moving modules in a
base or changing types of modules in a base. You can return the modules to
the original position/types or run AUX45 to accept the new configuration.
SP47 will be on and the error code will be stored in V7755.

E262
I/O OUT OF RANGE

An out of range I/O address has been encountered in the application
program. Correct the invalid address in the program. SP45 will be on and the
error code will be stored in V7755.

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

E
rror C

odes
A

ppendix C
E

rror C
odes

B–3
DL205 Error Codes

DL205 User Manual, 3rd Ed. 06/02

DL205 Error Code Description

E312
HP COMM
ERROR 2

A data error was encountered during communications with the CPU. Clear
the error and retry the request. If the error continues check the cabling
between the two devices, replace the handheld programmer, then if
necessary replace the CPU. SP46 will be on and the error code will be stored
in V7756.

E313
HP COMM
ERROR 3

An address error was encountered during communications with the CPU.
Clear the error and retry the request. If the error continues check the cabling
between the two devices, replace the handheld programmer, then if
necessary replace the CPU. SP46 will be on and the error code will be stored
in V7756.

E316
HP COMM
ERROR 6

A mode error was encountered during communications with the CPU. Clear
the error and retry the request. If the error continues replace the handheld
programmer, then if necessary replace the CPU. SP46 will be on and the
error code will be stored in V7756.

E320
HP COMM
TIME-OUT

The CPU did not respond to the handheld programmer communication
request. Check to insure cabling is correct and not defective. Power cycle the
system if the error continues replace the CPU first and then the handheld
programmer if necessary.

E321
COMM ERROR

A data error was encountered during communication with the CPU. Check to
insure cabling is correct and not defective. Power cycle the system and if the
error continues replace the CPU first and then the handheld programmer if
necessary.

E4**
NO PROGRAM

A syntax error exists in the application program. The most common is a
missing END statement. Run AUX21 to determine which one of the E4**
series of errors is being flagged. SP52 will be on and the error code will be
stored in V7755.

E401
MISSING END
STATEMENT

All application programs must terminate with an END statement. Enter the
END statement in appropriate location in your program. SP52 will be on and
the error code will be stored in V7755.

E402
MISSING LBL

A GOTO, GTS, MOVMC or LDLBL instruction was used without the
appropriate label. Refer to the programming manual for details on these
instructions. SP52 will be on and the error code will be stored in V7755.

E403
MISSING RET
(DL240 ONLY)

A subroutine in the program does not end with the RET instruction. SP52 will
be on and the error code will be stored in V7755.

E404
MISSING FOR
(DL240, DL250–1,
DL260)

A NEXT instruction does not have the corresponding FOR instruction. SP52
will be on and the error code will be stored in V7755.

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
E

rr
or

 C
od

es
A

pp
en

di
x

C
E

rr
or

 C
od

es
B–4

DL205 Error Codes

DL205 User Manual, 3rd Ed. 06/02

DL205 Error Code Description

E405
MISSING NEXT
(DL240/250–1/260)

A FOR instruction does not have the corresponding NEXT instruction. SP52
will be on and the error code will be stored in V7755.

E406
MISSING IRT

An interrupt routine in the program does not end with the IRT instruction.
SP52 will be on and the error code will be stored in V7755.

E412
SBR/LBL>64
(DL240/250–1/260)

There is greater than 64 SBR, LBL or DLBL instructions in the program. This
error is also returned if there is greater than 128 GTS or GOTO instructions
used in the program. SP52 will be on and the error code will be stored in
V7755.

E413
FOR/NEXT>64
(DL240/250–1/260)

There is greater than 64 FOR/NEXT loops in the application program. SP52
will be on and the error code will be stored in V7755.

E421
DUPLICATE STAGE
REFERENCE

Two or more SG or ISG labels exist in the application program with the same
number. A unique number must be allowed for each Stage and Initial Stage.
SP52 will be on and the error code will be stored in V7755.

E422
DUPLICATE
SBR/LBL
REFERENCE

Two or more SBR or LBL instructions exist in the application program with the
same number. A unique number must be allowed for each Subroutine and
Label. SP52 will be on and the error code will be stored in V7755.

E423
NESTED LOOPS
(DL240/250–1/260)

Nested loops (programming one FOR/NEXT loop inside of another) is not
allowed in the DL240/250–1/260 series. SP52 will be on and the error code
will be stored in V7755.

E431
INVALID ISG/SG
ADDRESS

An ISG or SG must not be programmed after the end statement such as in a
subroutine. SP52 will be on and the error code will be stored in V7755.

E432
INVALID JUMP
(GOTO) ADDRESS
(DL240/250–1/260)

A LBL that corresponds to a GOTO instruction must not be programmed after
the end statement such as in a subroutine. SP52 will be on and the error
code will be stored in V7755.

E433
INVALID SBR
ADDRESS
(DL240/250–1/260)

A SBR must be programmed after the end statement, not in the main body of
the program or in an interrupt routine. SP52 will be on and the error code will
be stored in V7755.

E435
INVALID RT
ADDRESS
(DL240/250–1/260)

A RT must be programmed after the end statement, not in the main body of
the program or in an interrupt routine. SP52 will be on and the error code will
be stored in V7755.

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

E
rror C

odes
A

ppendix C
E

rror C
odes

B–5
DL205 Error Codes

DL205 User Manual, 3rd Ed. 06/02

DL205 Error Code Description

E436
INVALID INT
ADDRESS

An INT must be programmed after the end statement, not in the main body of
the program. SP52 will be on and the error code will be stored in V7755.

E438
INVALID IRT
ADDRESS

An IRT must be programmed after the end statement, not in the main body of
the program. SP52 will be on and the error code will be stored in V7755.

E440
INVALID DATA
ADDRESS

Either the DLBL instruction has been programmed in the main program area
(not after the END statement), or the DLBL instruction is on a rung containing
input contact(s).

E441
ACON/NCON
(DL240/250–1/260)

An ACON or NCON must be programmed after the end statement, not in the
main body of the program. SP52 will be on and the error code will be stored
in V7755.

E451
BAD MLS/MLR

MLS instructions must be numbered in ascending order from top to bottom.

E452
X AS COIL

An X data type is being used as a coil output.

E453
MISSING T/C

A timer or counter contact is being used where the associated timer or
counter does not exist.

E454
BAD TMRA

One of the contacts is missing from a TMRA instruction.

E455
BAD CNT

One of the contacts is missing from a CNT or UDC instruction.

E456
BAD SR

One of the contacts is missing from the SR instruction.

E461
STACK OVERFLOW

More than nine levels of logic have been stored on the stack. Check the use
of OR STR and AND STR instructions.

E462
STACK
UNDERFLOW

An unmatched number of logic levels have been stored on the stack. Insure
the number of AND STR and OR STR instructions match the number of STR
instructions.

E463
LOGIC ERROR

A STR instruction was not used to begin a rung of ladder logic.

E464
MISSING CKT

A rung of ladder logic is not terminated properly.

E471
DUPLICATE COIL
REFERENCE

Two or more OUT instructions reference the same I/O point.

E472
DUPLICATE TMR
REFERENCE

Two or more TMR instructions reference the same number.

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
E

rr
or

 C
od

es
A

pp
en

di
x

C
E

rr
or

 C
od

es
B–6

DL205 Error Codes

DL205 User Manual, 3rd Ed. 06/02

DL205 Error Code Description

E473
DUPLICATE CNT
REFERENCE

Two or more CNT instructions reference the same number.

E480
INVALID CV
ADDRESS

The CV instruction is used in a subroutine or program interrupt routine. The
CV instruction may only be used in the main program area (before the END
statement).

E481
CONFLICTING
INSTRUCTIONS

An instruction exists between convergence stages.

E482
MAX. CV
INSTRUCTIONS
EXCEEDED

Number of CV instructions exceeds 17.

E483
INVALID CVJMP
ADDRESS

CVJMP has been used in a subroutine or a program interrupt routine.

E484
MISSING CV
INSTRUCTION

CVJMP is not preceded by the CV instruction. A CVJMP must immediately
follow the CV instruction.

E485
NO CVJMP

A CVJMP instruction is not placed between the CV and the SG, ISG, BLK,
BEND, END instruction.

E486
INVALID BCALL
ADDRESS

A BCALL is used in a subroutine or a program interrupt routine. The
BCALL instruction may only be used in the main program area (before the
END statement).

E487
MISSING BLK
INSTRUCTION

The BCALL instruction is not followed by a BLK instruction.

E488
INVALID BLK
ADDRESS

The BLK instruction is used in a subroutine or a program interrupt. Another
BLK instruction is used between the BCALL and the BEND instructions.

E489
DUPLICATED CR
REFERENCE

The control relay used for the BLK instruction is being used as an output
elsewhere.

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

E
rror C

odes
A

ppendix C
E

rror C
odes

B–7
DL205 Error Codes

DL205 User Manual, 3rd Ed. 06/02

DL205 Error Code Description

E490
MISSING SG
INSTRUCTION

The BLK instruction is not immediately followed by the SG instruction.

E491
INVALID ISG
INSTRUCTION
ADDRESS

There is an ISG instruction between the BLK and BEND instructions.

E492
INVALID BEND
ADDRESS

The BEND instruction is used in a subroutine or a program interrupt routine.
The BEND instruction is not followed by a BLK instruction.

E493
MISSING REQUIRED
INSTRUCTION

A [CV, SG, ISG, BLK, BEND] instruction must immediately follow the BEND
instruction.

E494
MISSING BEND
INSTRUCTION

The BLK instruction is not followed by a BEND instruction.

E499
PRINT
INSTRUCTION

Invalid PRINT instruct usage. Quotations and/or spaces were not entered or
entered incorrectly.

E501
BAD ENTRY

An invalid keystroke or series of keystrokes was entered into the handheld
programmer.

E502
BAD ADDRESS

An invalid or out of range address was entered into the handheld
programmer.

E503
BAD COMMAND

An invalid instruction was entered into the handheld programmer.

E504
BAD REF/VAL

An invalid value or reference number was entered with an instruction.

E505
INVALID
INSTRUCTION

An invalid instruction was entered into the handheld programmer.

E506
INVALID
OPERATION

An invalid operation was attempted by the handheld programmer.

E520
BAD OP–RUN

An operation which is invalid in the RUN mode was attempted by the
handheld programmer.

E521
BAD OP–TRUN

An operation which is invalid in the TEST RUN mode was attempted by the
handheld programmer.

E523
BAD OP–TPGM

An operation which is invalid in the TEST PROGRAM mode was attempted
by the handheld programmer.

E524
BAD OP–PGM

An operation which is invalid in the PROGRAM mode was attempted by the
handheld programmer.

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
E

rr
or

 C
od

es
A

pp
en

di
x

C
E

rr
or

 C
od

es
B–8

DL205 Error Codes

DL205 User Manual, 3rd Ed. 06/02

DL205 Error Code Description

E525
MODE SWITCH
(DL240/250–1/260)

An operation was attempted by the handheld programmer while the CPU
mode switch was in a position other than the TERM position.

E526
OFF LINE

The handheld programmer is in the OFFLINE mode. To change to the
ONLINE mode use the MODE the key.

E527
ON LINE

The handheld programmer is in the ON LINE mode. To change to the OFF
LINE mode use the MODE the key.

E528
CPU MODE

The operation attempted is not allowed during a Run Time Edit.

E540
CPU LOCKED

The CPU has been password locked. To unlock the CPU use AUX82 with the
password.

E541
WRONG
PASSWORD

The password used to unlock the CPU with AUX82 was incorrect.

E542
PASSWORD RESET

The CPU powered up with an invalid password and reset the password to
00000000. A password may be re-entered using AUX81.

E601
MEMORY FULL

Attempted to enter an instruction which required more memory than is
available in the CPU.

E602
INSTRUCTION
MISSING

A search function was performed and the instruction was not found.

E604
REFERENCE
MISSING

A search function was performed and the reference was not found.

E610
BAD I/O TYPE

The application program has referenced an I/O module as the incorrect type
of module.

E620
OUT OF MEMORY

An attempt to transfer more data between the CPU and handheld
programmer than the receiving device can hold.

E621
EEPROM NOT
BLANK

An attempt to write to a non-blank EEPROM was made. Erase the EEPROM
and then retry the write.

E622
NO HPP EEPROM

A data transfer was attempted with no EEPROM (or possibly a faulty
EEPROM) installed in the handheld programmer.

E623
SYSTEM EEPROM

A function was requested with an EEPROM which contains system
information only.

E624
V-MEMORY ONLY

A function was requested with an EEPROM which contains V-memory data
only.

E625
PROGRAM ONLY

A function was requested with an EEPROM which contains program data
only.

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

E
rror C

odes
A

ppendix C
E

rror C
odes

B–9
DL205 Error Codes

DL205 User Manual, 3rd Ed. 06/02

DL205 Error Code Description

E627
BAD WRITE

An attempt to write to a write protected or faulty EEPROM was made. Check
the write protect jumper and replace the EEPROM if necessary.

E628
EEPROM TYPE
ERROR

The wrong size EEPROM is being used. The DL230 and DL240 CPUs use
different size EEPROMs.

E640
COMPARE ERROR

A compare between the EEPROM and the CPU was found to be in error.

E650
HPP SYSTEM
ERROR

A system error has occurred in the handheld programmer. Power cycle the
handheld programmer. If the error returns replace the handheld programmer.

E651
HPP ROM ERROR

A ROM error has occurred in the handheld programmer. Power cycle the
handheld programmer. If the error returns replace the handheld programmer.

E652
HPP RAM ERROR

A RAM error has occurred in the handheld programmer. Power cycle the
handheld programmer. If the error returns replace the handheld programmer.

1C
Instruction
Execution Times

In This Appendix. . . .
— Introduction
— Boolean Instructions
— Comparative Boolean
— Bit of Word Boolean Instructions
— Immediate Instructions
— Timer, Counter, Shift Register Instructions
— Accumulator Data Instructions
— Logical Instructions
— Math Instructions
— Differential Instructions
— Bit Instructions
— Number Conversion Instructions
— Table Instructions
— CPU Control Instructions
— Program Control Instructions
— Interrupt Instructions
— Network Instructions
— Message Instructions
— RLLPLUS Instructions
— Message Instructions
— DRUM Instructions
— Clock / Calander Instructions
— MODBUS Instructions
— ASCII Instructions

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–2
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Introduction

This appendix contains several tables that provide the instruction execution times
for the DL205 CPUs. One thing you will notice is that many of the execution times
depend on the type of data being used with the instruction. For example, you’ll notice
that some of the instructions that use V-memory locations are further defined by the
following items.

� Data Registers
� Bit Registers

Some V-memory locations are considered data registers. For example, the
V-memory locations that store the timer or counter current values, or just regular
user V memory would be considered as a V-memory data register. Don’t think that
you cannot load a bit pattern into these types of registers, you can. It’s just that their
primary use is as a data register. The following locations are considered as data
registers.

Data Registers DL230 DL240 DL250–1 DL260

Timer Current Values V0 – V77 V0 – V177 V0 – V377 V0 – V377

Counter Current Values V1000 – V1077 V1000 – V1177 V1000 – V1177 V1000 – V1377

User Data Words V2000 – V2377
V4000 – V4177

V2000 – V3777
V4000 – V4377

V1400 – V7377
V10000 – V17777

V400 – V777
V1400 – V7377
V10000 – V35777

You may recall that some of the discrete points such as X, Y, C, etc. are automatically
mapped into V memory. The following locations that contain this data are considered
bit registers.

Bit Registers DL230 DL240 DL250–1 DL260

Input Points (X) V40400 – V 40407 V40400 – V 40407 V40400 – V 40437 V40400 – V 40477

Output Points (Y) V40500 – V40507 V40500 – V40507 V40500 – V40537 V40500 – V 40577

Control Relays (C) V40600 – V40617 V40600 – V40617 V40600 – V40677 V40600 – V 40777

Timer Status Bits V41100 – V41103 V41100 – V41107 V41100 – V41117 V41100 – V 41177

Counter Status Bits V41040 – V41143 V41040 – V41147 V41040 – V41147 V41140 – V 41157

Stages V41000 – V41017 V41000 – V41037 V41000 – V41077 V41000 – V41077

V-Memory Data
Registers

V-Memory Bit
Registers

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–3
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Some of the instructions can have more than one parameter so the table shows
execution times that depend on the amount and type of parameters. For example,
the SET instruction can be used to set a single point or a range of points. If you
examine the execution table you’ll notice the available data types and execution
times for both situations. The following diagram shows an example.

X0 X1 Y0 – Y7
SET

C0

Two Locations Available

SET 1st #: X, Y, C, S

2nd #: X, Y, C, S, (N pt)

17.4 �s

12.0�s+5.4�sxN

RST 1st #: X, Y, C, S

2nd #: X, Y, C, S, (N pt)

19.5 �s

10.5�s+5.2�sxN

How to Read the
Tables

Execution depends
on numbers of

locations and types
of data used

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–4
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Boolean Instructions

Boolean Instructions DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

STR X, Y, C, T, CT,S, SP 3.3 �s 3.3 �s 1.4 �s 1.4 �s .67 �s � �s .67 �s � �s

STRN X, Y, C, T, CT,S, SP 3.9 �s 3.9 �s 1.6 �s 1.6 �s .67 �s � �s .67 �s � �s

OR X, Y, C, T, CT, S, SP 2.7 �s 2.7 �s 1.0 �s 1.0 �s .51 �s .51 �s .51 �s .51 �s

ORN X, Y, C, T, CT,S, SP 3.3 �s 3.3 �s 1.4 �s 1.4 �s .55 �s .55 �s .55 �s .55 �s

AND X, Y, C, T, CT, S, SP 2.1 �s 2.1 �s 0.8 �s 0.8 �s .42 �s .42 �s .42 �s .42 �s

ANDN X, Y, C, T, CT, S, SP 2.7 �s 2.7 �s 1.2 �s 1.2 �s .51 �s .51 �s .51 �s .51 �s

ANDSTR None 1.2 �s 1.2 �s 0.7 �s 0.7 �s .37 �s .37 �s .37 �s .37 �s

ORSTR None 1.2 �s 1.2 �s 0.7 �s 0.7 �s .37 �s .37 �s .37 �s .37 �s

OUT X, Y, C 3.4 �s 3.4 �s 7.95 �s 7.65 �s 1.82 �s 1.82 �s 1.82 �s 1.82 �s

OROUT X, Y, C 8.6 �s 8.6 �s 8.25 �s 8.4 �s 2.09 �s 2.09 �s 2.09 �s 2.09 �s

NOT � – – – 1.04 �s 1.04 �s 1.04 �s 1.04 �s

SET 1st #: X, Y, C, S

2nd #: X, Y, C, S (N
pt)

17.4 �s

12.0�s+
5.4�sxN

6.8 �s

6.8 �s

11.4 �s

11.0�s+
7.0�sxN

8.4 �s

8.4 �s

9.2 �s

��� �s+
0.9�sxN

1.0 �s

1.1 �s

9.2 �s

��� �s+
0.9�sxN

1.0 �s

1.1 �s

RST 1st #: X, Y, C, S

2nd #: X, Y, C, S (N
pt)

17.7 �s

10.5�s+
5.2�sxN

6.8 �s

6.8 �s

11.4 �s

11.0�s+
7.0�sxN

8.4 �s

8.4 �s

9.2 �s

��� �s+
0.9�sxN

1.0 �s

1.1 �s

9.2 �s

��� �s+
0.9�sxN

1.0 �s

1.1 �s

1st #: T, CT

2nd #: T, CT (N pt)

31.6 �s

17�s+
14.6�sx

N

6.8 �s

6.8 �s

29.0 �s

24.3�s+
4.7�sxN

8.4 �s

8.4 �s

25.7 �s

16.8�s+
2.7�sxN

1.1 �s

1.4 �s

25.7 �s

16.8�s+
2.7�sxN

1.1 �s

1.4 �s

PAUSE 1wd: Y

2wd: Y (N points)

19.0 �s

15�s+
4�s x N

19.0 �s

15�s+4�
s x N

13.0 �s

11�s+3�
s x N

13.0 �s

11�s+3�
s x N

5.6 �s

9.2 �s+
0.3�sxN

5.4 �s

4.8 �s

5.6 �s

9.2 �s+
0.3�sxN

5.4 �s

4.8 �s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–5
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Comparative Boolean

Comparative Boolean
Instructions

DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

STRE 1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

77 �s
158 �s
57 �s

—
—

158 �s
240 �s
139 �s

—
—

—
—
—
—
—

—
—
—
—
—

13.8 �s
13.8 �s
13.8 �s

—
—

13.8 �s
13.8 �s
13.8 �s

—
—

—
—
—
—
—

—
—
—
—
—

46 �s
135 �s
46 �s
141 �s
235 �s

135 �s
225 �s
135 �s
231 �s
324 �s

—
—
—
—
—

—
—
—
—
—

16.2 �s
16.2 �s
16.2 �s
111.0 �s
115.0 �s

16.2 �s
16.2 �s
16.2 �s
111.0 �s
115.0 �s

—
—
—
—
—

—
—
—
—
—

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.7 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.7 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.7 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.7 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.7 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.7 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.7 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.7 �s
51.0 �s
51.0 �s

STRNE 1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

77 �s
158 �s
57 �s

—
—

158 �s
240 �s
139 �s

—
—

—
—
—
—
—

—
—
—
—
—

13.8 �s
13.8 �s
13.8 �s

—
—

13.8 �s
13.8 �s
13.8 �s

—
—

—
—
—
—
—

—
—
—
—
—

46 �s
136 �s
46 �s
141 �s
235 �s

135 �s
225 �s
135 �s
231 �s
324 �s

—
—
—
—
—

—
—
—
—
—

16.2 �s
16.2 �s
16.2 �s
111.0 �s
115.0 �s

16.2 �s
16.2 �s
16.2 �s
111.0 �s
115.0 �s

—
—
—
—
—

—
—
—
—
—

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

30.3 �s
30.3 �s
27.4 �s
51.0 �s
51.0 �s

30.3 �s
30.3 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

30.3 �s
30.3 �s
27.4 �s
51.0 �s
51.0 �s

30.3 �s
30.3 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

30.3 �s
30.3 �s
27.4 �s
51.0 �s
51.0 �s

30.3 �s
30.3 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

30.3 �s
30.3 �s
27.4 �s
51.0 �s
51.0 �s

30.3 �s
30.3 �s
27.4 �s
51.0 �s
51.0 �s

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–6
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Comparative Boolean (cont.) DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

ORE 1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

75 �s
158 �s
55 �s

—
—

158 �s
239 �s
137 �s

—
—

—
—
—
—
—

—
—
—
—
—

12.0 �s
12.0 �s
12.0 �s

—
—

12.0 �s
12.0 �s
12.0 �s

—
—

—
—
—
—
—

—
—
—
—
—

44 �s
134 �s
44 �s
140 �s
234 �s

134 �s
223 �s
133 �s
230 �s
324 �s

—
—
—
—
—

—
—
—
—
—

13.9 �s
13.9 �s
13.9 �s
110.0 �s
114.0 �s

13.9 �s
13.9 �s
13.9 �s
110.0 �s
114.0 �s

—
—
—
—
—

—
—
—
—
—

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

30.3 �s
30.3 �s
27.4 �s
50.4 �s
50.4 �s

30.3 �s
30.3 �s
27.4 �s
50.4 �s
50.4 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

30.3 �s
30.3 �s
27.4 �s
50.4 �s
50.4 �s

30.3 �s
30.3 �s
27.4 �s
50.4 �s
50.4 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

30.3 �s
30.3 �s
27.4 �s
50.4 �s
50.4 �s

30.3 �s
30.3 �s
27.4 �s
50.4 �s
50.4 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

30.3 �s
30.3 �s
27.4 �s
50.4 �s
50.4 �s

30.3 �s
30.3 �s
27.4 �s
50.4 �s
50.4 �s

ORNE 1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

75 �s
158 �s
55 �s

—
—

158 �s
239 �s
137 �s

—
—

—
—
—
—
—

—
—
—
—
—

12.0 �s
12.0 �s
12.0 �s

—
—

12.0 �s
12.0 �s
12.0 �s

—
—

—
—
—
—
—

—
—
—
—
—

44 �s
134 �s
44 �s
141 �s
234 �s

134 �s
223 �s
133 �s
230 �s
323 �s

—
—
—
—
—

—
—
—
—
—

13.9 �s
13.9 �s
13.9 �s
110.0 �s
114.0 �s

13.9 �s
13.9 �s
13.9 �s
110.0 �s
114.0 �s

—
—
—
—
—

—
—
—
—
—

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–7
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Comparative Boolean (cont.) DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

ANDE 1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

75 �s
158 �s
55 �s

—
—

158 �s
239 �s
137 �s

—
—

—
—
—
—
—

—
—
—
—
—

12.0 �s
12.0 �s
12.0 �s

—
—

12.0 �s
12.0 �s
12.0 �s

—
—

—
—
—
—
—

—
—
—
—
—

44 �s
134 �s
44 �s
139 �s
233 �s

134 �s
223 �s
133 �s
229 �s
322 �s

—
—
—
—
—

—
—
—
—
—

13.9 �s
13.9 �s
13.9 �s
109.0 �s
113.0 �s

13.9 �s
13.9 �s
13.9 �s
109.0 �s
113.0 �s

—
—
—
—
—

—
—
—
—
—

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

ANDNE 1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

75 �s
158 �s
55 �s

—
—

158 �s
239 �s
137 �s

—
—

—
—
—
—
—

—
—
—
—
—

12.0 �s
12.0 �s
12.0 �s

—
—

12.0 �s
12.0 �s
12.0 �s

—
—

—
—
—
—
—

—
—
—
—
—

44 �s
133 �s
44 �s
139 �s
233 �s

134 �s
223 �s
133 �s
229 �s
323 �s

—
—
—
—
—

—
—
—
—
—

13.9 �s
13.9 �s
13.9 �s
109.0 �s
113.0 �s

13.9 �s
13.9 �s
13.9 �s
109.0 �s
113.0 �s

—
—
—
—
—

—
—
—
—
—

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–8
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Comparative Boolean (cont.) DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

STR 1st 2nd

T, CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

78 �s
158 �s
57 �s

—
—

13.8 �s
13.8 �s
13.8 �s

—
—

46 �s
135 �s
46 �s
141 �s
235 �s

16.2 �s
16.2 �s
16.2 �s
111.0 �s
115.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

78 �s
159 �s
57 �s

—
—

159 �s
241 �s
139 �s

—
—

—
—
—
—
—

—
—
—
—
—

13.8 �s
13.8 �s
13.8 �s

—
—

13.8 �s
13.8 �s
13.8 �s

—
—

—
—
—
—
—

—
—
—
—
—

46 �s
135 �s
46 �s
141 �s
235 �s

135 �s
225 �s
135 �s
231 �s
324 �s

—
—
—
—
—

—
—
—
—
—

16.2 �s
16.2 �s
16.2 �s
111.0 �s
115.0 �s

16.2 �s
16.2 �s
16.2 �s
111.0 �s
115.0 �s

—
—
—
—
—

—
—
—
—
—

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–9
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Comparative Boolean (cont.) DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

STRN 1st 2nd

T, CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

78 �s
158 �s
57 �s

—
—

13.8 �s
13.8 �s
13.8 �s

—
—

46 �s
136 �s
46 �s
141 �s
235 �s

16.2 �s
16.2 �s
16.2 �s
111.0 �s
115.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

78 �s
159 �s
57 �s

—
—

159 �s
241 �s
139 �s

—
—

—
—
—
—
—

—
—
—
—
—

13.8 �s
13.8 �s
13.8 �s

—
—

13.8 �s
13.8 �s
13.8 �s

—
—

—
—
—
—
—

—
—
—
—
—

46 �s
135 �s
46 �s
141 �s
235 �s

136 �s
225 �s
135 �s
231 �s
324 �s

—
—
—
—
—

—
—
—
—
—

16.2 �s
16.2 �s
16.2 �s
111.0 �s
115.0 �s

16.2 �s
16.2 �s
16.2 �s
111.0 �s
115.0 �s

—
—
—
—
—

—
—
—
—
—

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–10
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Comparative Boolean (cont.) DL230 DL240 DL250–1 DL260

In-
struc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

OR 1st 2nd

T, CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

75 �s
158 �s
55 �s

—
—

12.0 �s
12.0 �s
12.0 �s

—
—

44 �s
134 �s
44 �s
140 �s
234 �s

13.9 �s
13.9 �s
13.9 �s
110.0 �s
114.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

75 �s
158 �s
55 �s

—
—

158 �s
240 �s
137 �s

—
—

—
—
—
—
—

—
—
—
—
—

12.0 �s
12.0 �s
12.0 �s

—
—

12.0 �s
12.0 �s
12.0 �s

—
—

—
—
—
—
—

—
—
—
—
—

44 �s
134 �s
44 �s
140 �s
234 �s

134 �s
223 �s
133 �s
230 �s
323 �s

—
—
—
—
—

—
—
—
—
—

13.9 �s
13.9 �s
13.9 �s
110.0 �s
114.0 �s

13.9 �s
13.9 �s
13.9 �s
110.0 �s
114.0 �s

—
—
—
—
—

—
—
—
—
—

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–11
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Comparative Boolean (cont.) DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

ORN 1st 2nd

T, CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

75 �s
158 �s
55 �s

—
—

12.0 �s
12.0 �s
12.0 �s

—
—

44 �s
134 �s
44 �s
140 �s
234 �s

13.9 �s
13.9 �s
13.9 �s
110.0 �s
114.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

75 �s
158 �s
55 �s

—
—

158 �s
240 �s
137 �s

—
—

—
—
—
—
—

—
—
—
—
—

12.0 �s
12.0 �s
12.0 �s

—
—

12.0 �s
12.0 �s
12.0 �s

—
—

—
—
—
—
—

—
—
—
—
—

44 �s
134 �s
44 �s
141 �s
234 �s

134 �s
223 �s
133 �s
230 �s
324 �s

—
—
—
—
—

—
—
—
—
—

13.9 �s
13.9 �s
13.9 �s
110.0 �s
114.0 �s

13.9 �s
13.9 �s
13.9 �s
110.0 �s
114.0 �s

—
—
—
—
—

—
—
—
—
—

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–12
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Comparative Boolean (cont.) DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

AND 1st 2nd

T, CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

76 �s
158 �s
55 �s

—
—

12.0 �s
12.0 �s
12.0 �s

—
—

44 �s
134 �s
44 �s
139 �s
233 �s

13.9 �s
13.9 �s
13.9 �s
109.0 �s
113.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

75 �s
158 �s
55 �s

—
—

158 �s
240 �s
137 �s

—
—

—
—
—
—
—

—
—
—
—
—

12.0 �s
12.0 �s
12.0 �s

—
—

12.0 �s
12.0 �s
12.0 �s

—
—

—
—
—
—
—

—
—
—
—
—

44 �s
134 �s
44 �s
140 �s
233 �s

134 �s
223 �s
133 �s
229 �s
323 �s

—
—
—
—
—

—
—
—
—
—

13.9 �s
13.9 �s
13.9 �s
109.0 �s
113.0 �s

13.9 �s
13.9 �s
13.9 �s
109.0 �s
113.0 �s

—
—
—
—
—

—
—
—
—
—

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–13
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Comparative Boolean (cont.) DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

ANDN 1st 2nd

T, CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

76 �s
158 �s
55 �s

—
—

12.0 �s
12.0 �s
12.0 �s

—
—

44 �s
134 �s
44 �s
139 �s
233 �s

13.9 �s
13.9 �s
13.9 �s
110.0 �s
114.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

76 �s
158 �s
55 �s

—
—

158 �s
240 �s
137 �s

—
—

—
—
—
—
—

—
—
—
—
—

12.0 �s
12.0 �s
12.0 �s

—
—

12.0 �s
12.0 �s
12.0 �s

—
—

—
—
—
—
—

—
—
—
—
—

44 �s
134 �s
44 �s
139 �s
233 �s

134 �s
223 �s
133 �s
229 �s
322 �s

—
—
—
—
—

—
—
—
—
—

13.9 �s
13.9 �s
13.9 �s
109.0 �s
113.0 �s

13.9 �s
13.9 �s
13.9 �s
109.0 �s
113.0 �s

—
—
—
—
—

—
—
—
—
—

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

7.6 �s
7.6 �s
4.8 �s
30.2 �s
30.2 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

29.9 �s
29.9 �s
27.4 �s
51.0 �s
51.0 �s

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–14
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Bit of Word Boolean Instructions

Bit of Word Boolean
Instructions

DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

STRB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

—
—

—
—

—
—

—
—

3.1 �s
3.1 �s
30.0 �s
30.0 �s

3.1 �s
3.1 �s
30.0 �s
30.0 �s

3.1 �s
3.1 �s
30.0 �s
30.0 �s

3.1 �s
3.1 �s
30.0 �s
30.0 �s

STRNB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

—
—

—
—

—
—

—
—

3.0 �s
3.0 �s
29.8 �s
29.8 �s

3.0 �s
3.0 �s
29.8 �s
29.8 �s

3.0 �s
3.0 �s
29.8 �s
29.8 �s

3.0 �s
3.0 �s
29.8 �s
29.8 �s

ORB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

—
—

—
—

—
—

—
—

2.9 �s
2.9 �s
29.9 �s
29.9 �s

2.9 �s
2.9 �s
29.9 �s
29.9 �s

2.9 �s
2.9 �s
29.9 �s
29.9 �s

2.9 �s
2.9 �s
29.9 �s
29.9 �s

ORNB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

—
—

—
—

—
—

—
—

2.8 �s
2.8 �s
29.6 �s
29.6 �s

2.8 �s
2.8 �s
29.6 �s
29.6 �s

2.8 �s
2.8 �s
29.6 �s
29.6 �s

2.8 �s
2.8 �s
29.6 �s
29.6 �s

ANDB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

—
—

—
—

—
—

—
—

2.8 �s
2.8 �s
29.6 �s
29.6 �s

2.8 �s
2.8 �s
29.6 �s
29.6 �s

2.8 �s
2.8 �s
29.6 �s
29.6 �s

2.8 �s
2.8 �s
29.6 �s
29.6 �s

ANDNB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

—
—

—
—

—
—

—
—

2.7 �s
2.7 �s
29.6 �s
29.6 �s

2.7 �s
2.7 �s
29.6 �s
29.6 �s

2.7 �s
2.7 �s
29.6 �s
29.6 �s

2.7 �s
2.7 �s
29.6 �s
29.6 �s

OUTB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

—
—

—
—

—
—

—
—

3.1 �s
3.1 �s
30.3 �s
30.3 �s

3.4 �s
3.4 �s
30.7 �s
30.7 �s

3.1 �s
3.1 �s
30.3 �s
30.3 �s

3.4 �s
3.4 �s
30.7 �s
30.7 �s

SETB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

—
—

—
—

—
—

—
—

13.4 �s
13.4 �s
41.1 �s
41.1 �s

3.4 �s
3.4 �s
29.1 �s
29.1 �s

13.4 �s
13.4 �s
41.1 �s
41.1 �s

3.4 �s
3.4 �s
29.1 �s
29.1 �s

RSTB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

—
—

—
—

—
—

—
—

13.5 �s
13.5 �s
41.3 �s
41.3 �s

1.4 �s
1.4 �s
29.1 �s
29.1 �s

13.5 �s
13.5 �s
41.3 �s
41.3 �s

1.4 �s
1.4 �s
29.1 �s
29.1 �s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–15
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Immediate Instructions

Immediate
Instructions

DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

LDI V — — — — — — 20.6 �s 1.1 �s

LDIF 1st#: X
2nd#: K:Constant — — — — — — �����s+

0.9�s x
N

��	 �s

STRI X 27 �s 9.8 �s 29 �s 10.7 �s 19.3 �s 19.3 �s 19.3 �s 19.3 �s

STRNI X 26 �s 8.6 �s 29 �s 10.7 �s 19.4 �s 19.4 �s 19.4 �s 19.4 �s

ORI X 27 �s 9.8 �s 29 �s 8.4 �s 19.1 �s 18.7 �s 19.1 �s 18.7 �s

ORNI X 26 �s 8.6 �s 29 �s 8.4 �s 19.2 �s 18.9 �s 19.2 �s 18.9 �s

ANDI X 25 �s 8.0 �s 27 �s 8.4 �s 18.7 �s 18.7 �s 18.7 �s 18.7 �s

ANDNI X 24 �s 6.8 �s 28 �s 8.4 �s 18.8 �s 18.8 �s 18.8 �s 18.8 �s

OROUTI Y 45 �s 45 �s 39 �s 40 �s 27.5 �s 27.5 �s 27.5 �s 27.5 �s

OUTI Y 45 �s 45 �s 39 �s 40 �s 25.5 �s 25.5 �s 25.5 �s 25.5 �s

OUTIF 1st#: Y
2nd#: K:Constant — — — — — — �����s+

0.9�s x
N

��	 �s

SETI 1st #: Y

2nd #: Y (N pt)

25.5 �s

5.5�s+2
0 xN

6.8 �s

6.8 �s

39.0 �s

44�s+25
xN

8.4 �s

8.4 �s

23.1 �s

���
�s+
1.4xN

0.9 �s

0.9 �s

23.1 �s

���
�s+
1.4xN

0.9 �s

0.9 �s

RSTI 1st #: Y

2nd #: Y (N pt)

25.5 �s

5�s+20.
5 xN

6.8 �s

6.8 �s

37 �s

45�s+22
xN

8.4 �s

8.4 �s

23.2 �s

���
�s+
1.4xN

0.9 �s

0.9 �s

23.2 �s

���
�s+
1.4xN

0.9 �s

0.9 �s

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–16
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Timer, Counter, Shift Register Instructions

Timer, Counter, Shift Register
Instructions

DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

TMR 1st 2nd

T V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

75 �s
158 �s
66 �s

—
—

31 �s
31 �s
31 �s

—
—

61 �s
158 �s
70 �s
177 �s
271 �s

23.5 �s
23.5 �s
23.5 �s
131.0 �s
136.0 �s

26.8 �s
26.8 �s
20.0 �s
45.6 �s
45.6 �s

7.3 �s
7.3 �s
4.8 �s
30.2 �s
30.2 �s

26.8 �s
26.8 �s
20.0 �s
45.6 �s
45.6 �s

7.3 �s
7.3 �s
4.8 �s
30.2 �s
30.2 �s

TMRF 1st 2nd

T V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

75 �s
158 �s
66 �s

—
—

31 �s
31 �s
31 �s

—
—

61 �s
158 �s
70 �s
177 �s
271 �s

23.5 �s
23.5 �s
23.5 �s
131.0 �s
136.0 �s

51.4 �s
51.4 �s
48.4 �s
75.9 �s
75.9 �s

7.3 �s
7.3 �s
4.6 �s
30.2 �s
30.2 �s

51.4 �s
51.4 �s
48.4 �s
75.9 �s
75.9 �s

7.3 �s
7.3 �s
4.6 �s
30.2 �s
30.2 �s

TMRA 1st 2nd

T V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

94 �s
304 �s
95 �s

—
—

56 �s
264 �s
45 �s

—
—

75 �s
253 �s
79 �s
193 �s
366 �s

41 �s
219 �s
49 �s
159 �s
331 �s

48.9 �s
48.9 �s
45.0 �s
75.9 �s
75.9 �s

7.3 �s
7.3 �s
4.6 �s
30.2 �s
30.2 �s

48.9 �s
48.9 �s
45.0 �s
75.9 �s
75.9 �s

7.3 �s
7.3 �s
4.6 �s
30.2 �s
30.2 �s

TMRAF 1st 2nd

T V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

98 �s
304 �s
95 �s

—
—

54 �s
264 �s
49 �s

—
—

75 �s
253 �s
80 �s
193 �s
366 �s

42 �s
218 �s
50 �s
159 �s
331 �s

54.2 �s
54.2 �s
50.3 �s
81.2 �s
81.2 �s

7.3 �s
7.3 �s
4.6 �s
30.2 �s
30.2 �s

54.2 �s
54.2 �s
50.3 �s
81.2 �s
81.2 �s

7.3 �s
7.3 �s
4.6 �s
30.2 �s
30.2 �s

CNT 1st 2nd

CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

68 �s
148 �s
56 �s

—
—

61 �s
141 �s
45 �s

—
—

59 �s
157 �s
59 �s
176 �s
270 �s

38 �s
133 �s
45 �s
152 �s
245 �s

25.8 �s
25.8 �s
22.2 �s
53.5 �s
53.5 �s

7.3 �s
7.3 �s
4.6 �s
30.2 �s
30.2 �s

25.8 �s
25.8 �s
22.2 �s
53.5 �s
53.5 �s

7.3 �s
7.3 �s
4.6 �s
30.2 �s
30.2 �s

SGCNT 1st 2nd

CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

57 �s
140 �s
46 �s

—
—

64 �s
148 �s
53 �s

—
—

58 �s
155 �s
67 �s
175 �s
268 �s

38 �s
133 �s
45 �s
152 �s
245 �s

27.3 �s
27.3 �s
23.5 �s
54.9 �s
54.9 �s

7.3 �s
7.3 �s
4.6 �s
30.2 �s
30.2 �s

27.3 �s
27.3 �s
23.5 �s
54.9 �s
54.9 �s

7.3 �s
7.3 �s
4.6 �s
30.2 �s
30.2 �s

UDC 1st 2nd

CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

103 �s
310 �s
102 �s

—
—

74 �s
281 �s
70 �s

—
—

80.0 �s
261 �s
97 �s
202 �s
374 �s

56 �s
224 �s
60 �s
165 �s
336 �s

39.8 �s
39.8 �s
35.4 �s
67.8 �s
67.8 �s

7.3 �s
7.3 �s
4.6 �s
30.2 �s
30.2 �s

39.8 �s
39.8 �s
35.4 �s
67.8 �s
67.8 �s

7.3 �s
7.3 �s
4.6 �s
30.2 �s
30.2 �s

SR C (N points to shift) 30�s+
4.6�sxN

17.2 �s 25�s+
4�sxN

19.7 �s 17.8�s+
0.9�sxN

9.8 �s 17.8�s+
0.9�sxN

9.8 �s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–17
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Accumulator Data Instructions
Accumulator / Stack Load

and Output Data
Instructions

DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

LD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

68 �s
149 �s
62 �s
169 �s
256 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s
8.4 �s

68 �s
143 �s
159 �s
238 �s
62 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s
8.4 �s

11.8 �s
11.8 �s
9.0 �s
33.9 �s
33.9 �s

1.0 �s
1.0 �s
1.0 �s
0.9 �s
0.9 �s

11.8 �s
11.8 �s
9.0 �s
33.9 �s
33.9 �s

1.0 �s
1.0 �s
1.0 �s
0.9 �s
0.9 �s

LDA O: (Octal constant for
address) 58 �s 8.4 �s 56 �s 8.4 �s 10.4 �s 1.0 �s 10.4 �s 1.0 �s

LDD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

72 �s
266 �s
64 �s
172 �s
373 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s
8.4 �s

67 �s
228 �s
69 �s
158 �s
323 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s
8.4 �s

12.2 �s
12.2 �s
9.0 �s
37.8 �s
37.8 �s

1.0 �s
1.0 �s
1.0 �s
0.9 �s
0.9 �s

12.2 �s
12.2 �s
9.0 �s
37.8 �s
37.8 �s

1.0 �s
1.0 �s
1.0 �s
0.9 �s
0.9 �s

LDF 1st 2nd

X, Y, C, S K:Constant
T, CT, SP

— — 86�s+
5�s x N

8.4 �s �����s+
0.9�s x

N

����s �����s+
0.9�s x

N

����s

LDR V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

— — — —

29.5 �s
29.5 �s
25.5 �s
54.9 �s
54.9 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

29.5 �s
29.5 �s
25.5 �s
54.9 �s
54.9 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

LDSX K: Constant — — 79�s 8.4 �s 14.6 �s 1.0 �s 14.6 �s 1.0 �s

LDX V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

— — — —

10.8 �s
10.8 �s
45.2 �s
45.2 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s

10.8 �s
10.8 �s
45.2 �s
45.2 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s

OUT V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

60 �s
132 �s
162 �s
239 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s

21 �s
126 �s
112 �s
222 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s

9.3 �s
9.3 �s
35.2 �s
35.2 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

9.3 �s
9.3 �s
35.2 �s
35.2 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

OUTD V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

68 �s
276 �s
196 �s
384 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s

26 �s
235 �s
116 �s
331 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s

10.2 �s
10.2 �s
35.8 �s
35.8 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

10.2 �s
10.2 �s
35.8 �s
35.8 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–18
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Accumulator / Stack Load
and Output Data Instructions

(Continued)

DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

OUTF 1st 2nd

X, Y, C K:Constant — — 53�s+
7�s x N

8.4 �s 54�s+
1.0�s x

N

��� �s 54�s+
1.0�s x

N

��� �s

OUTL V:Data Reg.
V:Bit Reg. — — — — — —

13.5 �s
13.5 �s

1.0 �s
1.0 �s

OUTM V:Data Reg.
V:Bit Reg. — — — — — —

13.7 �s
13.7 �s

1.0 �s
1.0 �s

OUTX V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

— — — — — —

17.2 �s
17.2 �s
43.4 �s
43.4 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s

POP None

55 �s 7.2 �s 50 �s 8.4 �s 8.4 �s ����s 8.4 �s ����s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–19
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Logical Instructions

Logical (Accumulator)
Instructions

DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

AND V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

58 �s
261 �s

—
—

10.4 �s
10.4 �s

—
—

54 �s
145 �s
162 �s
241 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s

7.9 �s
7.9 �s
33.4 �s
33.4 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

7.9 �s
7.9 �s
33.4 �s
33.4 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

ANDD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

—
—

53 �s
—
—

—
—

8.4 �s
—
—

—
—

60 �s
—
—

—
—

8.4 �s
—
—

8.9 �s
8.9 �s
5.7 �s
34.4 �s
34.4 �s

1.0 �s
1.0 �s
1.0 �s
0.9 �s
0.9 �s

8.9 �s
8.9 �s
5.7 �s
34.4 �s
34.4 �s

1.0 �s
1.0 �s
1.0 �s
0.9 �s
0.9 �s

ANDF 1st 2nd

X, Y, C,S K:Constant
T,CT,SP

GX,GY

— — — — �����s+
0.9�s x

N

��� �s �����s+
0.9�s x

N

��� �s

ANDS None — — — — — — 10.0 �s 1.0 �s

OR V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

59 �s
257 �s

—
—

10.4 �s
10.4 �s

—
—

54 �s
144 �s
160 �s
239 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s

8.1 �s
8.1 �s
33.8 �s
33.8 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

8.1 �s
8.1 �s
33.8 �s
33.8 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

ORD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

—
—

49 �s
—
—

—
—

8.4 �s
—
—

—
—

60 �s
—
—

—
—

8.4 �s
—
—

9.0 �s
9.0 �s
5.8 �s
34.5 �s
34.5 �s

1.0 �s
1.0 �s
1.0 �s
0.9 �s
0.9 �s

9.0 �s
9.0 �s
5.8 �s
34.5 �s
34.5 �s

1.0 �s
1.0 �s
1.0 �s
0.9 �s
0.9 �s

ORF 1st 2nd

X, Y, C,S K:Constant
T,CT,SP

GX,GY

— — — — �����s+
0.9�s x

N

��� �s �����s+
0.9�s x

N

��� �s

ORS None — — — — — — 10.2 �s 1.0 �s

XOR V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

60 �s
257 �s

—
—

10.4 �s
10.4 �s

—
—

69 �s
144 �s
160 �s
239 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s

8.0 �s
8.0 �s
33.6 �s
33.6 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

8.0 �s
8.0 �s
33.6 �s
33.6 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

XORD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

—
—

49 �s
—
—

—
—

8.4 �s
—
—

—
—

62 �s
—
—

—
—

8.4 �s
—
—

9.0 �s
9.0 �s
5.4 �s
34.4 �s
34.4 �s

1.0 �s
1.0 �s
1.0 �s
0.9 �s
0.9 �s

9.0 �s
9.0 �s
5.4 �s
34.4 �s
34.4 �s

1.0 �s
1.0 �s
1.0 �s
0.9 �s
0.9 �s

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–20
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Logical (Accumulator)
Instructions
(Continued)

DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

XORF 1st 2nd

X, Y, C,S K:Constant
T,CT,SP

GX,GY

— — — — �����s+
0.9�s x

N

��� �s �����s+
0.9�s x

N

��� �s

XORS None — — — — — — 10.1 �s 1.0 �s

CMP V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

59 �s
259 �s

—
—

10.4 �s
10.4 �s

—
—

69 �s
115 �s
130 �s
211 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s

9.4 �s
9.4 �s
34.9 �s
34.9 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

9.4 �s
9.4 �s
34.9 �s
34.9 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

CMPD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

63 �s
257 �s
54 �s

—
—

8.4 �s
8.4 �s
8.4 �s

—
—

47 �s
206 �s
49 �s
133 �s
303 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s
8.4 �s

9.9 �s
9.9 �s
6.7 �s
35.4 �s
35.4 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

9.9 �s
9.9 �s
6.7 �s
35.4 �s
35.4 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

CMPF 1st 2nd

X, Y, C,S K:Constant
T,CT,SP

GX,GY

— — — — �����s+
1.0�s x

N

��� �s �����s+
1.0�s x

N

��� �s

CMPR V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

— — — —

42.8 �s
42.8�s
38.4 �s
69.0 �s
69.0 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

42.8 �s
42.8�s
38.4 �s
69.0 �s
69.0 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

CMPS None — — — — — — 11.2 �s 1.0 �s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–21
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Math Instructions
Math Instructions

(Accumulator)
DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

ADD V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

198 �s
397 �s

—
—

10.6 �s
10.6 �s

—
—

291 �s
363 �s
441 �s
520 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s

78.4 �s
78.4 �s
101.2 �s
101.2 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s

78.4 �s
78.4 �s
101.2 �s
101.2 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s

ADDD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

198 �s
397 �s
188 �s

—
—

8.4 �s
8.4 �s
8.4 �s

—
—

291 �s
512 �s
298 �s
442 �s
608 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s
8.4 �s

83.3 �s
83.3 �s
67.7 �s
101.2 �s
101.2 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s
0.9 �s

83.3 �s
83.3 �s
67.7 �s
101.2 �s
101.2 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s
0.9 �s

SUB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

200 �s
397 �s

—
—

10.6 �s
10.6 �s

—
—

287 �s
360 �s
434 �s
513 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s

77.4 �s
77.4 �s
95.1 �s
95.1 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s

77.4 �s
77.4 �s
95.1 �s
95.1 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s

SUBD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

198 �s
392 �s
190 �s

—
—

8.4 �s
8.4 �s
8.4 �s

—
—

288 �s
504 �s
294 �s
434 �s
600 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s
8.4 �s

82.5 �s
82.5 �s
66.0 �s
99.7 �s
99.7 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s
0.9 �s

82.5 �s
82.5 �s
66.0 �s
99.7 �s
99.7 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s
0.9 �s

MUL V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

497 �s
483 �s
487 �s

—
—

10.6 �s
10.6 �s
8.4 �s

—
—

311 �s
385 �s
334 �s
401 �s
461 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s
8.4 �s

266.1 �s
266.1 �s
286.9 �s
290.0 �s
290.0 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s
0.9 �s

266.1 �s
266.1 �s
286.9 �s
290.0 �s
290.0 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s
0.9 �s

MULD V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

—
—

—
—

—
—

—
—

839.1 �s
839.1 �s
863.1 �s
863.1 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s

839.1 �s
839.1 �s
863.1 �s
863.1 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s

DIV V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

909 �s
1108 �s
699 �s

—
—

10.6 �s
10.6 �s
8.4 �s

—
—

601 �s
675 �s
573 �s
691 �s
771 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s
8.4 �s

363.9 �s
363.9 �s
384.4 �s
419.8 �s
419.8 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s
0.9 �s

363.9 �s
363.9 �s
384.4 �s
419.8 �s
419.8 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s
0.9 �s

DIVD V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

—
—

—
—

—
—

—
—

398.3 �s
398.3 �s
390.9 �s
390.9 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s

398.3 �s
398.3 �s
390.9 �s
390.9 �s

0.9 �s
0.9 �s
0.9 �s
0.9 �s

INC V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

—
—

—
—

—
—

—
—

48.5 �s
48.5 �s
74.7 �s
74.7 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s

48.5 �s
48.5 �s
74.7 �s
74.7 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s

DEC V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

—
—

—
—

—
—

—
—

47.5 �s
47.5 �s
71.5 �s
71.5 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s

47.5 �s
47.5 �s
71.5 �s
71.5 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–22
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Math Instructions (cont.) DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

INCB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

88 �s
349 �s

—
—

10.4 �s
10.4 �s

—
—

35 �s
211 �s
126 �s
307 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s

13.2 �s
13.2 �s
38.6 �s
38.6 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

13.2 �s
13.2 �s
38.6 �s
38.6 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

DECB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

82 �s
351 �s

—
—

10.4 �s
10.4 �s

—
—

33 �s
210 �s
123 �s
304 �s

8.4 �s
8.4 �s
8.4 �s
8.4 �s

13.2 �s
13.2 �s
38.0 �s
38.0 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

13.2 �s
13.2 �s
38.0 �s
38.0 �s

1.0 �s
1.0 �s
0.9 �s
0.9 �s

ADDB V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

24.9 �s
24.9 �s
23.5 �s
51.1 �s
51.1 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

24.9 �s
24.9 �s
23.5 �s
51.1 �s
51.1 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

ADDBD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

24.4 �s
24.4 �s
20.7 �s
50.7 �s
50.7 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

SUBB V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

24.7 �s
24.7 �s
23.3 �s
50.6 �s
50.6 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

24.7 �s
24.7 �s
23.3 �s
50.6 �s
50.6 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

SUBBD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

24.2 �s
24.2 �s
20.2 �s
50.2 �s
50.2 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

MULB V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

10.8 �s
10.8 �s
8.2 �s
37.1 �s
37.1 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

10.8 �s
10.8 �s
8.2 �s
37.1 �s
37.1 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

DIVB V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

28.7 �s
28.7 �s
26.1 �s
54.9 �s
54.9 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

28.7 �s
28.7 �s
26.1 �s
54.9 �s
54.9 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

ADDR V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

48.1 �s
48.1 �s
41.7 �s
74.3 �s
74.3 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

48.1 �s
48.1 �s
41.7 �s
74.3 �s
74.3 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

SUBR V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

50.1 �s
50.1 �s
58.7 �s
76.3 �s
76.3 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

50.1 �s
50.1 �s
58.7 �s
76.3 �s
76.3 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–23
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Math Instructions (cont.) DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

MULR V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

54.2 �s
54.2 �s
42.7 �s
80.4 �s
80.4 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

54.2 �s
54.2 �s
42.7 �s
80.4 �s
80.4 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

DIVR V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

50.1 �s
50.1 �s
58.7 �s
76.3 �s
76.3 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

50.1 �s
50.1 �s
58.7 �s
76.3 �s
76.3 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s
1.0 �s

ADDF 1st 2nd

X, Y, C,S K:Constant
T,CT,SP

GX,GY

— — — — — — ������s+
0.9�s x

N

��� �s

SUBF 1st 2nd

X, Y, C,S K:Constant
T,CT,SP

GX,GY

— — — — — — ��
���s+
0.9�s x

N

��� �s

MULF 1st 2nd

X, Y, C,S K:Constant
T,CT,SP

GX,GY

— — — — — — ������s+
0.8�s x

N

��� �s

DIVF 1st 2nd

X, Y, C,S K:Constant
T,CT,SP

GX,GY

— — — — — — 	

���s+
0.8�s x

N

��� �s

ADDS None — — — — — — ���� �s ��� �s

SUBS None — — — — — — �
�� �s ��� �s

MULS None — — — — — — �	��� �s ��� �s

DIVS None — — — — — — 	�
�� �s ��� �s

ADDBS None — — — — — — �	�� �s ��� �s

SUBBS None — — — — — — ���
 �s ��� �s

MULBS None — — — — — — ���
 �s ��� �s

DIVBS None — — — — — — ���
 �s ��� �s

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–24
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Math Instructions (cont.) DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

SQRTR None — — — — — —

�� �s ��� �s

SINR None — — — — — — ����
 �s ��� �s

COSR None — — — — — — ����� �s ��� �s

TANR None — — — — — — �
��� �s ��� �s

ASINR None — — — — — — 	
��
 �s ��� �s

ACOSR None — — — — — — ��
�� �s ��� �s

ATANR None — — — — — — ��
�� �s ��� �s

Differential Instructions

Differential Instructions DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

PD X, Y, C 13.5 �s 13.5 �s 15.9 �s 14.6 �s 14.4 �s 14.4 �s 14.4 �s 14.4 �s

STRPD X, Y, C,S,T,CT — — — — 5.4 �s 5.4 �s 5.4 �s 5.4 �s

STRND X, Y, C,S,T,CT — — — — 7.3 �s 7.3 �s 7.3 �s 7.3 �s

ORPD X, Y, C,S,T,CT — — — — 6.8 �s 5.2 �s 6.8 �s 5.2 �s

ORND X, Y, C,S,T,CT — — — — 7.1 �s 4.9 �s 7.1 �s 4.9 �s

ANDPD X, Y, C,S,T,CT — — — — 6.8 �s 5.2 �s 6.8 �s 5.2 �s

ANDND X, Y, C,S,T,CT — — — — 7.1 �s 4.9 �s 7.1 �s 4.9 �s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–25
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Bit Instructions

Bit Instructions
(Accumulator)

DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

SUM None — — — — — — ��
 �s ��� �s

SHFR V:Data Reg. (N bits)
V:Bit Reg. (N bits)
K:Constant (N bits)

44�s+14
.6 x N

243�s+1
4.6 x N

34�s+14
.6 x N

10.4 �s
8.4 �s
8.4 �s

35�s+6
x N

110�s+6
x N

35�s+6
x N

8.4 �s
8.4 �s
8.4 �s

�����s+
0.1 x N

8.4�s+
0.1 x N

0.9 �s �����s+
0.1 x N

8.4�s+
0.1 x N

0.9 �s

SHFL V:Data Reg. (N bits)
V:Bit Reg. (N bits)
K:Constant (N bits)

44�s+14
.6 x N

243�s+1
4.6 x N

34�s+14
.6 x N

10.4 �s
8.4 �s
8.4 �s

33�s+6
x N

107�s+6
x N

33�s+6
x N

8.4 �s
8.4 �s
8.4 �s

�����s+
0.1 x N

8.4�s+
0.1 x N

0.9 �s �����s+
0.1 x N

8.4�s+
0.1 x N

0.9 �s

ROTR V:Data Reg. (N bits)
V:Bit Reg. (N bits)
K:Constant (N bits)

— — — — — —

16.4 �s
16.4 �s
12.9 �s

1.0 �s
1.0 �s
1.0 �s

ROTL V:Data Reg. (N bits)
V:Bit Reg. (N bits)
K:Constant (N bits)

— — — — — —

16.4 �s
16.4 �s
12.7 �s

1.0 �s
1.0 �s
1.0 �s

ENCO None 62 �s 7.2 �s 98 �s 8.4 �s 33.9 �s 0.9 �s 33.9 �s 0.9 �s

DECO None 34 �s 7.2 �s 28 �s 8.4 �s 5.7 �s 1.0 �s 5.7 �s 1.0 �s

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–26
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Number Conversion Instructions

Number Conversion
Instructions (Accumulator)

DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

BIN None 359 �s 7.2 �s 267 �s 8.4 �s 100.2 �s 0.9 �s 100.2 �s 0.9 �s

BCD None 403 �s 7.2 �s 383 �s 8.4 �s 95.2 �s 0.9 �s 95.2 �s 0.9 �s

INV None 27 �s 5.0 �s 12.0 �s 8.4 �s 2.5 �s 1.0 �s 2.5 �s 1.0 �s

BCDCPL None 296 �s 7.2 �s 69 �s 8.4 �s 75.6 �s 1.0 �s 75.6 �s 1.0 �s

ATH V — — — — — — 25.4 �s 1.0 �s

HTA V — — — — — — 25.4 �s 1.0 �s

GRAY None — — 227 �s 9.0 �s 110.8 �s 1.0 �s 110.8 �s 1.0 �s

SFLDGT None — — 258 �s 9.0 �s 23.1 �s 1.0 �s 23.1 �s 1.0 �s

BTOR None — — — — 18.6 �s 1.0 �s 18.6 �s 1.0 �s

RTOB None — — — — 8.6 �s 1.0 �s 8.6 �s 1.0 �s

RADR None — — — — — — 51.4 �s 1.0 �s

DEGR None — — — — — — 81.5 �s 1.0 �s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–27
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Table Instructions

Table Instructions DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

FILL V:Data Reg.
V:Bit Reg.

K:Constant

P:Indir. (Data)
P:Indir. (Bit)

—
—

—
—

—
—

—
—

—
—

—
—

���	�s+
8.0�s x

N

�����s+
8.0�s x

N

55.1�s+
8.0�s x

N

1.0 �s

1.0 �s

1.0 �s

FIND V:Data Reg. (N bits)
V:Bit Reg. (N bits)
K:Constant (N bits)

— — — — — —

66.8 �s
66.8 �s
64.0 �s

1.0 �s
1.0 �s
1.0 �s

FDGT V:Data Reg. (N bits)
V:Bit Reg. (N bits)
K:Constant (N bits)

— — — — — —

66.1 �s
66.1 �s
55.2 �s

1.0 �s
1.0 �s
1.0 �s

FINDB V:Data Reg. (N bits)
V:Bit Reg. (N bits)
P:Indir. (Data)
P:Indir. (Bit)

— — — — — —

210.8 �s
210.8 �s
237.0 �s
237.0 �s

1.0 �s
1.0 �s
1.0 �s
1.0 �s

MOV Move V:data reg. to V:data reg
.
Move V:bit reg. to V:data reg.

Move V:data reg to V:bit reg.

Move V:bit reg. to V:bit reg.
N= #of words

450�s+
17 x N
430�s+
244 x N
460�s+
215 x N
490�s+
448 x N

6.2�s

6.2�s

6.2�s

6.2�s

586�s+
8 x N

629�s+
114.7 xN
569�s+
94.4 x N
639�s+
198 x N

8.4�s

8.4�s

8.4�s

8.4�s

60.2�s+
9.5xN

0.9 �s 60.2�s+
9.5xN

0.9 �s

TTD V:Data Reg.
V:Bit Reg

— — — — — — ���� �s
���� �s

��� �s
��� �s

RFB V:Data Reg.
V:Bit Reg

— — — — — — ���
 �s
���
 �s

��� �s
��� �s

STT V:Data Reg.
V:Bit Reg
K:Constant

— — — — — — �
�
 �s
�
�
 �s
���� �s

��� �s
��� �s
��� �s

RFT V:Data Reg.
V:Bit Reg

— — — — — — ���� �s
51.1 �s

��� �s
��� �s

ATT V:Data Reg.
V:Bit Reg
K:Constant

— — — — — — ���� �s
53.5 �s
50.8 �s

��� �s
��� �s
��� �s

TSHFL V:Data Reg.
V:Bit Reg

— — — — — — ��	�� �s
134.0 �s

��� �s
��� �s

TSHFR V:Data Reg.
V:Bit Reg

— — — — — — ����� �s
133.9 �s

��� �s
��� �s

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–28
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Table Instructions
(Continued)

DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

ANDMOV V:Data Reg.
V:Bit Reg

— — — — — —
��� �s

��� �s

��� �s
��� �s

ORMOV V:Data Reg.
V:Bit Reg

— — — — — —
��	 �s

��	 �s

��� �s
��� �s

XORMOV V:Data Reg.
V:Bit Reg

— — — — — —
��	 �s

��	 �s

��� �s
��� �s

SWAP V:Data Reg.
V:Bit Reg

— — — — — —
	�� �s

	�� �s

��� �s
��� �s

SETBIT V:Data Reg. (N bits)
V:Bit Reg. (N bits)

— — — — — — 59.5 �s
59.5 �s

1.0 �s
1.0 �s

RSTBIT V:Data Reg. (N bits)
V:Bit Reg. (N bits)

— — — — — — 59.5 �s
59.5 �s

1.0 �s
1.0 �s

MOVMC Move V:Data Reg. to E2

Move V:Bit Reg. to E2

Move from E2 to V:Data Reg.
Move from E2 to V:Bit Reg.

N= #of words

—
—

250�s+
201xN

—

—
—

6.2�s
—

—
—

392�s+
7843xN
520�s+
181 x N
565�s+
344 x N

8.4�s
8.4�s
8.4�s
8.4�s

�����s+
10.4xN

����s �����s+
10.4xN

����s

LDLBL K 58�s 8.4�s 56 �s 8.4�s 6.4�s 1.3 �s ��	�s 1.3�s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–29
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

CPU Control Instructions

CPU Control
Instructions

DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data
Types

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

NOP None 0 �s 0 �s 0 �s 0 �s 0.5 �s 0.5 �s 0.5 �s 0.5 �s

END None 27 �s 27 �s 16 �s 16 �s 12.8 �s 0 �s 12.8 �s 0 �s

STOP None 16 �s 5 �s 15 �s 7.4 �s 0 �s 0.9 �s 0 �s 0.9 �s

RSTWT None — — 19 �s 8.4 �s 4.7 �s 0.9 �s 4.7 �s 0.9 �s

Program Control Instructions

Program Control Instruc-
tions

DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

GOTO K — — 14 �s 8.4 �s 5.1 �s 4.8 �s 5.1 �s 4.8 �s

LBL K — — 0.6 �s 0.6 �s 5.7 �s 0.0 �s 5.7 �s 0.0 �s

FOR V, K — — 32 �s 16.4 �s 85.8 �s 5.8 �s 85.8 �s 5.8 �s

NEXT None — — 19 �s 0 �s 10.2 �s 0.0 �s 10.2 �s 0.0 �s

GTS K — — 37 �s 11.4 �s 10.9 �s 5.5 �s 10.9 �s 5.5 �s

SBR K — — 0.6 �s 0 �s 0.5 �s 0.0 �s 0.5 �s 0.0 �s

RT None — — 35 �s 0 �s 9.9 �s 0.0 �s 9.9 �s 0.0 �s

RTC None — — — — — — 11.4 �s 5.9 �s

MLS K (1–7) 12 �s 12 �s 11.5 �s 11.5 �s 3.7 �s 3.7 �s 3.7 �s 3.7 �s

MLR K (0–7)
N= 1 to 7

13 �s +
2.4 x N

13 �s +
2.4 x N

12.7�s +
2.3 xN

12.7�s +
2.3 xN

3.5 �s 3.5 �s 3.5 �s 3.5 �s

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–30
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Interrupt Instructions

Interrupt Instructions DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

ENI None 9 �s 5 �s 10.5 �s 8.4 �s 5.0 �s 1.0 �s 5.0 �s 1.0 �s

DISI None 8 �s 5 �s 11 �s 8.4 �s 5.7 �s 0.9 �s 5.7 �s 0.9 �s

INT 0 (0–7) 0 �s 0 �s 0 �s 0 �s 0 �s 0 �s 0 �s 0 �s

IRT None 1.6 �s 0 �s 8 �s 0 �s 1.3 �s 0 �s 1.3 �s 0 �s

IRTC None — — — — — — 0.5 �s 0 �s

Network Instructions

Network Instructions DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

RX X, Y, C, T, CT, SP, S
V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

— — TBD TBD 251.3 �s
251.3 �s
251.3 �s
270.3 �s
270.3 �s

1.1 �s
1.1 �s
1.1 �s
1.9 �s
1.9 �s

251.3 �s
251.3 �s
251.3 �s
270.3 �s
270.3 �s

1.1 �s
1.1 �s
1.1 �s
1.9 �s
1.9 �s

WX X, Y, C, T, CT, SP, S
V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

— — TBD TBD 252.0 �s
252.0 �s
252.0 �s
271.3 �s
271.3 �s

2.7 �s
2.7 �s
2.7 �s
3.4 �s
3.4 �s

252.0 �s
252.0 �s
252.0 �s
271.3 �s
271.3 �s

2.7 �s
2.7 �s
2.7 �s
3.4 �s
3.4 �s

Intelligent I/O Instructions

Network Instructions DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

RD V:Data Reg.
V:Bit Reg.

TBD TBD TBD TBD 385.7 �s
385.7 �s

1.2 �s
1.2 �s

385.7 �s
385.7 �s

1.2 �s
1.2 �s

WT V:Data Reg.
V:Bit Reg.

TBD TBD TBD TBD 385.6 �s
385.6 �s

1.2 �s
1.2 �s

385.6 �s
385.6 �s

1.2 �s
1.2 �s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–31
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

Message Instructions

Message Instructions DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

FAULT V:Data Reg.
V:Bit Reg.
K:Constant

171 �s
253 �s
2798 �s

8.4 �s
8.4 �s
8.4 �s

23176
�s

23206
�s

29108
�s

8.4 �s
8.4 �s
8.4 �s

84.9 �s
84.9 �s
80.8 �s

1.1 �s
1.1 �s
1.2 �s

84.9 �s
84.9 �s
80.8 �s

1.1 �s
1.1 �s
1.2 �s

DLBL K 0 �s 0 �s 0 �s 0 �s 0 �s 0 �s 0 �s 0 �s

NCON K 0 �s 0 �s 0 �s 0 �s 0 �s 0 �s 0 �s 0 �s

ACON K 0 �s 0 �s 0 �s 0 �s 0 �s 0 �s 0 �s 0 �s

PRINT Text Data — — — — 36.3 �s 1.1 �s 36.3 �s 1.1 �s

RLLPLUS Instructions

RLLPLUS Instructions DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

ISG S 31 �s 32 �s 28 �s 27 �s 20.9 �s 9.2 �s 20.9 �s 9.2 �s

SG S 31 �s 32 �s 28 �s 27 �s 20.9 �s 9.2 �s 20.9 �s 9.2 �s

JMP S 14 �s 8 �s 14.3 �s 8.4 �s 20.9 �s 3.7 �s 20.9 �s 3.7 �s

NJMP S 14 �s 8 �s 13.3 �s 8.4 �s 21.0 �s 4.0 �s 21.0 �s 4.0 �s

CV S 43 �s 27 �s 20 �s 20 �s ���� �s ���� �s ���� �s ���� �s

CVJMP S (N stages, 1 to 16) 33�s
+14.5�s

xN

23 �s 22.9�s +
6.1 xN

10 �s 11.0 �s 11.0 �s 11.0 �s 11.0 �s

BCALL C 18 �s 17 �s 17 �s 18 �s 22.1 �s 22.6 �s 22.1 �s 22.6 �s

BLK C 32 �s 30 �s 17 �s 13 �s 17.1 �s 14.6 �s 17.1 �s 14.6 �s

BEND None 17 �s 17 �s 9 �s 9 �s 8.7 �s 0.0 �s 8.7 �s 0.0 �s

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–32
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

DRUM Instructions

DRUM Instructions DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

DRUM CT — — — — 265.2 �s 48.8 �s 265.2 �s 48.8 �s

EDRUM CT — — — — 189.5 �s 78.0 �s 189.5 �s 78.0 �s

MDRMD CT — — — — 411.3 �s 216.4 �s 411.3 �s 216.4 �s

MDRMW CT — — — — 378.6 �s 147.0 �s 378.6 �s 147.0 �s

Clock / Calander Instructions

Clock / Calander
Instructions

DL230 DL240 DL250–1 DL260

DATE V:Data Reg.
V:Bit Reg.

— — — — 24.0 �s 1.2 �s 24.0 �s 1.2 �s

TIME V:Data Reg.
V:Bit Reg.

— — — — 50.8 �s 1.2 �s 50.8 �s 1.2 �s

MODBUS Instructions

Clock / Calander
Instructions

DL230 DL240 DL250–1 DL260

MRX Input, Input Register
Coil, Holding Register

— — — — — — 120.2 �s 1.3 �s

MWX Input, Input Register
Coil, Holding Register

— — — — — — 21.3 �s 1.3 �s

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

Inst. E
xecution Tim

es
A

ppendix C
Inst. E

xecution Tim
es

C–33
Instruction Execution Times

DL205 User Manual, 3rd Ed. 06/02

ASCII Instructions

ASCII Instructions DL230 DL240 DL250–1 DL260

Instruc-
tion

Legal Data Types Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

Execute Not
Execute

AIN V — — — — — — 13.9 �s 12.0 �s

AFIND V — — — — — — 111.5 �s 1.3 �s

AEX V — — — — — — 111.7 �s 1.3 �s

CMPV V — — — — — — 12.2 �s 1.3 �s

SWAPB V — — — — — — 109.8 �s 1.3 �s

VPRINT Text Data — — — — — — 161.6 �s 1.3 �s

PRINTV V — — — — — — 163.3 �s 1.3 �s

ACRB V — — — — — — 3.9 �s 1.1 �s

1D
Special Relays

In This Appendix. . . .
— DL230 CPU Special Relays
— DL240/DL250–1/DL260 CPU Special Relays

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

S
pe

ci
al

 R
el

ay
s

A
pp

en
di

x
D

S
pe

ci
al

 R
el

ay
s

A
pp

en
di

x
E

S
pe

ci
al

 R
el

ay
s

D–2
Special Relays

DL205 User Manual, 3rd Ed. 06/02

DL230 CPU Special Relays

SP0 First scan on for the first scan after a power cycle or program to run transition
only. The relay is reset to off on the second scan. It is useful where a
function needs to be performed only on program startup.

SP1 Always ON provides a contact to insure an instruction is executed every scan.

SP2 Always OFF provides a contact that is always off.

SP3 1 minute clock on for 30 seconds and off for 30 seconds.

SP4 1 second clock on for 0.5 second and off for 0.5 second.

SP5 100 ms clock on for 50 ms. and off for 50 ms.

SP6 50 ms clock on for 25 ms. and off for 25 ms.

SP7 Alternate scan on every other scan.

SP12 Terminal
run mode

on when the CPU is in the run mode.

SP16 Terminal
program mode

on when the CPU is in the program mode.

SP20 Forced
stop mode

on when the STOP instruction is executed.

SP22 Interrupt enabled on when interrupts have been enabled using the ENI instruction.

SP40 Critical error on when a critical error such as I/O communication loss has
occurred.

SP41 Warning on when a non critical error such as a low battery has occurred.

SP43 Battery low on when the CPU battery voltage is low.

SP44 Program
memory error

on when a memory error such as a memory parity error has
occurred.

SP45 I/O error on when an I/O error occurs. For example, an I/O module is
withdrawn from the base, or an I/O bus error is detected.

SP47 I/O
configuration
error

on if an I/O configuration error has occurred. The CPU power-up I/O
configuration check must be enabled before this relay will be
functional.

SP50 Fault instruction on when a Fault Instruction is executed.

SP51 Watch Dog
timeout

on if the CPU Watch Dog timer times out.

SP52 Grammatical
error

on if a grammatical error has occurred either while the CPU is
running or if the syntax check is run. V7755 will hold the exact error
code.

SP53 Solve logic error on if CPU cannot solve the logic.

Startup and
Real-Time Relays

CPU Status Relays

System Monitoring

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

S
pecial R

elays
A

ppendix D
S

pecial R
elays

A
ppendix E

S
pecial R

elays
D–3

Special Relays

DL205 User Manual, 3rd Ed. 06/02

SP60 Value less than on when the accumulator value is less than the instruction value.

SP61 Value equal to on when the accumulator value is equal to the instruction value.

SP62 Greater than on when the accumulator value is greater than the instruction value.

SP63 Zero on when the result of the instruction is zero (in the accumulator.)

SP64 Half borrow on when the 16 bit subtraction instruction results in a borrow.

SP65 Borrow on when the 32 bit subtraction instruction results in a borrow.

SP66 Half carry on when the 16 bit addition instruction results in a carry.

SP67 Carry when the 32 bit addition instruction results in a carry.

SP70 Sign on anytime the value in the accumulator is negative.

SP71 Invalid octal
number

on when an Invalid octal number was entered. This also occurs when
the V-memory specified by a pointer (P) is not valid.

SP73 Overflow on if overflow occurs in the accumulator when a signed addition or
subtraction results in an incorrect sign bit.

SP75 Data error on if a BCD number is expected and a non–BCD number is
encountered.

SP76 Load zero on when any instruction loads a value of zero into the accumulator.

SP100 X0 is on X0 — on when corresponding input is on.

SP540 Current = target value on when the counter current value equals the value in V3630.

SP541 Current = target value on when the counter current value equals the value in V3632.

SP542 Current = target value on when the counter current value equals the value in V3634.

SP543 Current = target value on when the counter current value equals the value in V3636.

SP544 Current = target value on when the counter current value equals the value in V3640.

SP545 Current = target value on when the counter current value equals the value in V3642.

SP546 Current = target value on when the counter current value equals the value in V3644.

SP547 Current = target value on when the counter current value equals the value in V3646.

SP550 Current = target value on when the counter current value equals the value in V3650.

SP551 Current = target value on when the counter current value equals the value in V3652.

SP552 Current = target value on when the counter current value equals the value in V3654.

SP553 Current = target value on when the counter current value equals the value in V3656.

SP554 Current = target value on when the counter current value equals the value in V3660.

SP555 Current = target value on when the counter current value equals the value in V3662.

SP556 Current = target value on when the counter current value equals the value in V3664.

SP557 Current = target value on when the counter current value equals the value in V3666.

SP560 Current = target value on when the counter current value equals the value in V3670.

SP561 Current = target value on when the counter current value equals the value in V3672.

SP562 Current = target value on when the counter current value equals the value in V3674.

SP563 Current = target value on when the counter current value equals the value in V3676.

SP564 Current = target value on when the counter current value equals the value in V3700.

SP565 Current = target value on when the counter current value equals the value in V3702.

SP566 Current = target value on when the counter current value equals the value in V3704.

SP567 Current = target value on when the counter current value equals the value in V3706.

Accumulator
Status

Counter Interface
Module Relays

Equal Relays for
Multi-step Presets
with Up/Down
Counter #1 (for use
with a Counter
Interface Module)

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

S
pe

ci
al

 R
el

ay
s

A
pp

en
di

x
D

S
pe

ci
al

 R
el

ay
s

A
pp

en
di

x
E

S
pe

ci
al

 R
el

ay
s

D–4
Special Relays

DL205 User Manual, 3rd Ed. 06/02

DL240/DL250–1/DL260 CPU Special Relays

SP0 First scan on for the first scan after a power cycle or program to run transition
only. The relay is reset to off on the second scan. It is useful where a
function needs to be performed only on program startup.

SP1 Always ON provides a contact to insure an instruction is executed every scan.

SP3 1 minute clock on for 30 seconds and off for 30 seconds.

SP4 1 second clock on for 0.5 second and off for 0.5 second.

SP5 100 ms clock on for 50 ms. and off for 50 ms.

SP6 50 ms clock on for 25 ms. and off for 25 ms.

SP7 Alternate scan on every other scan.

SP11 Forced run mode on anytime the CPU switch is in the RUN position.

SP12 Terminal
run mode

on when the CPU switch is in the TERM position and the CPU is in
the RUN mode.

SP13 Test run mode on when the CPU switch is in the TERM position and the CPU is in
the test RUN mode.

SP14 Break Relay 1
(DL250–1/260)

on when the BREAK instructions is executed. It is OFF when the CPU
is in any other mode.

SP15 Test program
mode

on when the CPU is in the TERM position and the CPU is in the TEST
PROGRAM MODE.

SP16 Terminal
program mode

on when the CPU switch is in the TERM position and the CPU is in
the PROGRAM MODE.

SP17 Forced stop
mode relay
(DL250–1/260)

on anytime the CPU keyswitch is in the STOP position.

SP20 Forced
stop mode

on when the STOP instruction is executed.

SP21 Break Relay 2
(DL250–1/260
only)

on when the BREAK instructions is executed. It is OFF when the CPU
mode is changed to RUN.

SP22 Interrupt enabled on when interrupts have been enabled using the ENI instruction.

SP25 CPU battery dis-
abled relay
(DL250–1/260)

on when the CPU battery is disabled by special V–memory.

Startup and
Real-Time Relays

CPU Status Relays

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

S
pecial R

elays
A

ppendix D
S

pecial R
elays

A
ppendix E

S
pecial R

elays
D–5

Special Relays

DL205 User Manual, 3rd Ed. 06/02

SP40 Critical error on when a critical error such as I/O communication loss has
occurred.

SP41 Warning on when a non-critical error such as a low battery has occurred.

SP43 Battery low/dead on when the CPU battery voltage is low or dead.
Note: The CPU must have a battery installed.

SP44 Program
memory error

on when a memory error such as a memory parity error has
occurred.

SP45 I/O error on when an I/O error occurs. For example, an I/O module is
withdrawn from the base, or an I/O bus error is detected.

SP46 Communications
error

on when a communications error has occurred on any of the CPU
ports.

SP47 I/O configuration
error

on if an I/O configuration error has occurred. The CPU power-up I/O
configuration check must be enabled before this relay will be
functional.

SP50 Fault instruction on when a Fault Instruction is executed.

SP51 Watch Dog
timeout

on if the CPU Watch Dog timer times out.

SP52 Grammatical
error

on if a grammatical error has occurred either while the CPU is
running or if the syntax check is run. V7755 contains the exact error
code.

SP53 Solve logic error on if CPU cannot solve the logic.

SP54 Intelligent I/O
error

on when communications with an intelligent module has occurred.

SP60 Value less than on when the accumulator value is less than the instruction value.

SP61 Value equal to on when the accumulator value is equal to the instruction value.

SP62 Greater than on when the accumulator value is greater than the instruction value.

SP63 Zero on when the result of the instruction is zero (in the accumulator.)

SP64 Half borrow on when the 16 bit subtraction instruction results in a borrow.

SP65 Borrow on when the 32 bit subtraction instruction results in a borrow.

SP66 Half carry on when the 16 bit addition instruction results in a carry.

SP67 Carry when the 32 bit addition instruction results in a carry.

SP70 Sign on anytime the value in the accumulator is negative.

SP71 Invalid octal
number

on when an Invalid octal number was entered. This also occurs when
the V-memory specified by a pointer (P) is not valid.

SP72 on anytime accumulator has an invalid floating point number..

SP73 Overflow on if overflow occurs in the accumulator when a signed addition or
subtraction results in a incorrect sign bit.

SP74 on when a floating point math operation results in an overflow error..

SP75 Data error on if a BCD number is expected and a non–BCD number is
encountered.

SP76 Load zero on when any instruction loads a value of zero into the accumulator.

SP100 X0 is on X0 — on when corresponding input is on.

SP101 X1 is on X1 — on when corresponding input is on.

SP102 X2 is on X2 — on when corresponding input is on.

SP103 X3 is on X3 — on when corresponding input is on.

System Monitoring
Relays

Accumulator
Status Relays

Counter Interface
Module Relays

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

S
pe

ci
al

 R
el

ay
s

A
pp

en
di

x
D

S
pe

ci
al

 R
el

ay
s

A
pp

en
di

x
E

S
pe

ci
al

 R
el

ay
s

D–6
Special Relays

DL205 User Manual, 3rd Ed. 06/02

SP116 DL240 CPU
communication

on when the CPU is communicating with another device

SP116 DL250–1/260
communication

on when port 2 is communicating with another device

SP117 Comm error
Port 2
(DL250–1/260)

on when Port 2 has encountered a communication error.

SP120 Module busy
Slot 0

on when the communication module in slot 0 is busy transmitting or
receiving. You must use this relay with the RX or WX instructions to
prevent attempting to execute a RX or WX while the module is busy .

SP121 Com. error
Slot 0

on when the communication module in slot 0 of the local base has
encountered a communication error.

SP122 Module busy
Slot 1

on when the communication module in slot 1 of the local base is busy
transmitting or receiving. You must use this relay with the RX or WX
instructions to prevent attempting to execute a RX or WX while the
module is busy.

SP123 Com. error
Slot 1

on when the communication module in slot 1 of the local base has
encountered a communication error.

SP124 Module busy
Slot 2

on when the communication module in slot 2 of the local base is busy
transmitting or receiving. You must use this relay with the RX or WX
instructions to prevent attempting to execute a RX or WX while the
module is busy.

SP125 Com. error
Slot 2

on when the communication module in slot 2 of the local base has
encountered a communication error.

SP126 Module busy
Slot 3

on when the communication module in slot 3 of the local base is busy
transmitting or receiving. You must use this relay with the RX or WX
instructions to prevent attempting to execute a RX or WX while the
module is busy.

SP127 Com. error
Slot 3

on when the communication module in slot 3 of the local base has
encountered a communication error.

SP130 Module busy
Slot 4

on when the communication module in slot 4 of the local base is busy
transmitting or receiving. You must use this relay with the RX or WX
instructions to prevent attempting to execute a RX or WX while the
module is busy.

SP131 Com. error
Slot 4

on when the communication module in slot 4 of the local base has
encountered a communication error.

SP132 Module busy
Slot 5

on when the communication module in slot 5 of the local base is busy
transmitting or receiving. You must use this relay with the RX or WX
instructions to prevent attempting to execute a RX or WX while the
module is busy.

SP133 Com. error
Slot 5

on when the communication module in slot 5 of the local base has
encountered a communication error.

SP134 Module busy
Slot 6

on when the communication module in slot 6 of the local base is busy
transmitting or receiving. You must use this relay with the RX or WX
instructions to prevent attempting to execute a RX or WX while the
module is busy.

SP135 Com. error
Slot 6

on when the communication module in slot 6 of the local base has
encountered a communication error.

SP136 Module busy
Slot 7

on when the communication module in slot 7 of the local base is busy
transmitting or receiving. You must use this relay with the RX or WX
instructions to prevent attempting to execute a RX or WX while the
module is busy.

SP137 Com. error
Slot 7

on when the communication module in slot 7 of the local base has
encountered a communication error.

Communications
Monitoring Relays

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

D
L405 E

rror C
odes

A
ppendix C

S
pecial R

elays
A

ppendix D
S

pecial R
elays

A
ppendix E

S
pecial R

elays
D–7

Special Relays

DL205 User Manual, 3rd Ed. 06/02

SP540 Current = target value on when the counter current value equals the value in V3630.

SP541 Current = target value on when the counter current value equals the value in V3632.

SP542 Current = target value on when the counter current value equals the value in V3634.

SP543 Current = target value on when the counter current value equals the value in V3636.

SP544 Current = target value on when the counter current value equals the value in V3640.

SP545 Current = target value on when the counter current value equals the value in V3642.

SP546 Current = target value on when the counter current value equals the value in V3644.

SP547 Current = target value on when the counter current value equals the value in V3646.

SP550 Current = target value on when the counter current value equals the value in V3650.

SP551 Current = target value on when the counter current value equals the value in V3652.

SP552 Current = target value on when the counter current value equals the value in V3654.

SP553 Current = target value on when the counter current value equals the value in V3656.

SP554 Current = target value on when the counter current value equals the value in V3660.

SP555 Current = target value on when the counter current value equals the value in V3662.

SP556 Current = target value on when the counter current value equals the value in V3664.

SP557 Current = target value on when the counter current value equals the value in V3666.

SP560 Current = target value on when the counter current value equals the value in V3670.

SP561 Current = target value on when the counter current value equals the value in V3672.

SP562 Current = target value on when the counter current value equals the value in V3674.

SP563 Current = target value on when the counter current value equals the value in V3676.

SP564 Current = target value on when the counter current value equals the value in V3700.

SP565 Current = target value on when the counter current value equals the value in V3702.

SP566 Current = target value on when the counter current value equals the value in V3704.

SP567 Current = target value on when the counter current value equals the value in V3706.

Equal Relays for
Multi-step Presets
with Up/Down
Counter #1 (for use
with a Counter
Interface Module)

A
pp

en
di

x
A

D
L4

05
 E

rr
or

 C
od

es
A

pp
en

di
x

B
D

L4
05

 E
rr

or
 C

od
es

A
pp

en
di

x
C

S
pe

ci
al

 R
el

ay
s

A
pp

en
di

x
D

S
pe

ci
al

 R
el

ay
s

A
pp

en
di

x
E

S
pe

ci
al

 R
el

ay
s

D–8
Special Relays

DL205 User Manual, 3rd Ed. 06/02

SP570 Current = target value on when the counter current value equals the value in V3710.

SP571 Current = target value on when the counter current value equals the value in V3712.

SP572 Current = target value on when the counter current value equals the value in V3714.

SP573 Current = target value on when the counter current value equals the value in V3716.

SP574 Current = target value on when the counter current value equals the value in V3720.

SP575 Current = target value on when the counter current value equals the value in V3722.

SP576 Current = target value on when the counter current value equals the value in V3724.

SP577 Current = target value on when the counter current value equals the value in V3726.

SP600 Current = target value on when the counter current value equals the value in V3730.

SP601 Current = target value on when the counter current value equals the value in V3732.

SP602 Current = target value on when the counter current value equals the value in V3734.

SP603 Current = target value on when the counter current value equals the value in V3736.

SP604 Current = target value on when the counter current value equals the value in V3740.

SP605 Current = target value on when the counter current value equals the value in V3742.

SP606 Current = target value on when the counter current value equals the value in V3744.

SP607 Current = target value on when the counter current value equals the value in V3746.

SP610 Current = target value on when the counter current value equals the value in V3750.

SP611 Current = target value on when the counter current value equals the value in V3752.

SP612 Current = target value on when the counter current value equals the value in V3754.

SP613 Current = target value on when the counter current value equals the value in V3756.

SP614 Current = target value on when the counter current value equals the value in V3760.

SP615 Current = target value on when the counter current value equals the value in V3762.

SP616 Current = target value on when the counter current value equals the value in V3764.

SP617 Current = target value on when the counter current value equals the value in V3766.

Equal Relays for
Multi-step Presets
with Up/Down
Counter #2 (for use
with a Counter
Interface Module)

1E
DL205
Product Weights

In This Appendix. . . .
— Product Weight Table

A
pp

en
di

x
C

D
L4

05
 P

ro
du

ct
 W

ei
gh

ts
A

pp
en

di
x

D
D

L4
05

 P
ro

du
ct

 W
ei

gh
ts

A
pp

en
di

x
E

P
ro

du
ct

 W
ei

gh
ts

E–2
DL205 Product Weights

DL205 User Manual, 3rd Ed. 06/02

Product Weight Table

CPUs Weight

D2–230 2.8 oz. (80g)

D2–240 2.8 oz. (80g)

D2–250–1 2.5 oz. (70g)

D2–260 2.5 oz. (70g)

I/O Bases

D2–03B–1 12.3oz. (350g)

D2–03BDC1–1 11.4oz. (322g)

D2–03BDC–2 10.1oz. (285g)

D2–04B–1 13.4 oz. (381g)

D2–04BDC1–1 12.5 oz. (354g)

D2–04BDC–2 11.2 oz. (317g)

D2–06B–1 14.4 oz. (410g)

D2–06BDC1–1 13.8 oz. (392g)

D2–06BDC2–1 13.8 oz. (392g)

D2–09B–1 18.6 oz. (530g)

D2–09BDC1–1 18.3 oz. (522g)

D2–09BDC2–1 19 oz. (530g)

DC Input Modules

D2–08ND3 2.3 oz. (65g)

D2–32ND3 2.1oz. (60g)

D2–32ND3–2 3.8oz. (109g)

AC Input Modules Weight

D2–08NA–1 2.5 oz. (70g)

D2–08NA–2 2.5 oz. (70g)

D2–16NA 2.4 oz. (68g)

DC Input/Relay
Output Module

D2–08CDR 3.5 oz. (100g)

DC Output
Modules

D2–04TD1 2.8 oz. (80g)

D2–08TD1 2.3 oz. (65g)

D2–08TD2 4.2 oz. (118g)

D2–16TD1–2 2.1 oz. (60g)

D2–16TD2–2 2.0 oz. (56g)

D2–32TD1 2.1oz. (60g)

D2–32TD2 3.5oz. (100g)

AC Output
Modules

D2–08TA 2.8 oz. (80g)

F2–08TA 3.0 oz. (86g)

D2–12TA 3.8 oz. (110g)

Relay Output
Modules

D2–04TRS 2.8 oz. (80g)

D2–08TR 3.8 oz. (110g)

D2–12TR 4.6 oz. (130g)

F2–08TR 5.5 oz. (156g)

F2–08TRS 5.5 oz. (156g)

CPU–Slot
Controllers

H2–EBC 1.6 oz. (45g)

H2–EBC–F 2.1 oz. (60g)

F2–SDS–1 2.8 oz. (80g)

H2–PBC 2.1 oz. (80g)

F2–DEVNETS–1 3.0 oz. (86g)

Analog Modules Weight

F2–04AD–1 3.0 oz (86g)

F2–04AD–2 3.0 oz (86g)

F2–08AD–1 3.0 oz (86g)

F2–08AD–2 4.2 oz (118g)

F2–02DA–1 2.8 oz. (80g)

F2–02DA–2 2.8 oz. (80g)

F2–08DA–1 2.8 oz. (80g)

F2–08DA–2 3.8 oz. (109g)

F2–02DAS–1 3.8 oz. (109g)

F2–02DAS–2 3.8 oz. (109g)

F2–4AD2DA 4.2 oz. (118g)

F2–04RTD 3.0 oz (86g)

F2–04THM 3.0 oz (86g)

Specialty
Modules

H2–CTRIO 2.3 oz. (65g)

D2–CTRINT 2.3 oz. (65g)

H2–ECOM 1.6 oz. (45g)

H2–ECOM–F 5.5 oz. (156g)

H2–ERM 1.6 oz. (45g)

H2–ERM–F 5.5 oz. (156g)

D2–DCM 3.8 oz. (109g)

D2–EM 2.3 oz. (65g)

D2–CM 1.8 oz. (50g)

F2–08SIM 2.1 oz. (60g)

��
European Union
Directives (CE)

���������		
����
�
�
�

������	
�����������������
����
�

�����������������������������
���
�

A
pp

en
di

x
F

E
U

 D
ire

ct
iv

es
F–2

European Union Directives

DL205 User Manual, 3rd Ed. 06/02

European Union (EU) Directives

NOTE: The information contained in this section is intended as a guideline and is
based on our interpretation of the various standards and requirements. Since the
actual standards are issued by other parties and in some cases Governmental
agencies, the requirements can change over time without advance warning or notice.
Changes or additions to the standards can possibly invalidate any part of the
information provided in this section.

This area of certification and approval is absolutely vital to anyone who wants to do
business in Europe. One of the key tasks that faced the EU member countries and
the European Economic Area (EEA) was the requirement to harmonize several
similar yet distinct standards together into one common standard for all members.
The primary purpose of a harmonized standard was to make it easier to sell and
transport goods between the various countries and to maintain a safe working and
living environment. The Directives that resulted from this merging of standards are
now legal requirements for doing business in Europe. Products that meet these
Directives are required to have a CE mark to signify compliance.
Currently, the members of the EU are Austria, Belgium, Denmark, Finland, France,
Germany, Greece, Ireland, Italy, Luxembourg, The Netherlands, Portugal, Spain,
Sweden, and the United Kingdom. Iceland, Liechtenstein, and Norway together with
the EU members make up the European Economic Area (EEA) and all are covered
by the Directives.
There are several Directives that apply to our products. Directives may be amended,
or added, as required.

� Electromagnetic Compatibility Directive (EMC) — this Directive
attempts to ensure that devices, equipment, and systems have the
ability to function satisfactorily in their electromagnetic environment
without introducing intolerable electromagnetic disturbance to anything
in that environment.

� Machinery Safety Directive — this Directive covers the safety aspects
of the equipment, installation, etc. There are several areas involved,
including testing standards covering both electrical noise immunity and
noise generation.

� Low Voltage Directive — this Directive is safety related and covers
electrical equipment that has voltage ranges of 50–1000VAC and/or
75–1500VDC.

� Battery Directive — this Directive covers the production, recycling, and
disposal of batteries.

Certain standards within each Directive already require mandatory compliance,
such as the EMC Directive, which has gained the most attention, and the Low
Voltage Directive.
Ultimately, we are all responsible for our various pieces of the puzzle. As
manufacturers, we must test our products and document any test results and/or
installation procedures that are necessary to comply with the Directives. As a
machine builder, you are responsible for installing the products in a manner which
will ensure compliance is maintained. You are also responsible for testing any
combinations of products that may (or may not) comply with the Directives when
used together.

Member Countries

Applicable
Directives

Compliance

A
ppendix F

E
U

 D
irectives

F–3
European Union Directives

DL205 User Manual, 3rd Ed. 06/02

The end user of the products must comply with any Directives that may cover
maintenance, disposal, etc. of equipment or various components. Although we
strive to provide the best assistance available, it is impossible for us to test all
possible configurations of our products with respect to any specific Directive.
Because of this, it is ultimately your responsibility to ensure that your machinery (as
a whole) complies with these Directives and to keep up with applicable Directives
and/or practices that are required for compliance.CE conformity will be impaired if
the recommended installation guidlines are not met.

Currently, the DL05, DL06, DL205, DL305, and DL405 PLC systems manufactured
by Koyo Electronics Industries, FACTS Engineering or Host Engineering, when
properly installed and used, conform to the Electromagnetic Compatibility (EMC)
and Low Voltage Directive requirements of the following standards.

� EMC Directive Standards Revelant to PLCs
EN50081–1 Generic immunity standard for residential, commercial,

and light industry (DL05 only at this time)
EN50081–2 Generic emission standard for industrial environment.
EN50082–1 Generic immunity standard for residential, commercial,

and light industry
EN50082–2 Generic immunity standard for industrial environment.

� Low Voltage Directive Standards Applicable to PLCs
EN61010–1 Safety requirements for electrical equipment for

measurement, control, and laboratory use.

� Product Specific Standard for PLCs
EN61131–2 Programmable controllers, equipment requirements and
tests. This standard replaces the above generic standards for immunity
and safety. However, the generic emissions standards must still be used
in conjunction with the following standards:

EN 61000-3-2 Harmonics
EN 61000-3-2 Fluctuations

We are currently in the process of changing our
testing procedures from the generic standards to the product specific
standard, so that all new products will be tested to standard
EN61131–2. Check our catalog or website for updated information.

The installation requirements to comply with the requirements of the Machinery
Directive, EMC Directive and Low Voltage Directive are slightly more complex than
the normal installation requirements found in the United States. To help with this, we
have published a special manual which you can download from our website:
www.soliton.com.br in Brazil.

� DA–EU–M – EU Installation Manual that covers special installation
requirements to meet the EU Directive requirements. Download this
manual to obtain the most up-to-date information.

Although the EMC Directive gets the most attention, other basic Directives, such as
the Machinery Directive and the Low Voltage Directive, also place restrictions on the
control panel builder. Because of these additional requirements it is recommended
that the following publications be purchased and used as guidelines:

� BSI publication TH 42073: February 1996 – covers the safety and
electrical aspects of the Machinery Directive

� EN 60204–1:1992 – General electrical requirements for machinery, including
Low Voltage and EMC considerations

Special Installation
Manual

Other Sources of
Information

A
pp

en
di

x
F

E
U

 D
ire

ct
iv

es
F–4

European Union Directives

DL205 User Manual, 3rd Ed. 06/02

� IEC 1000–5–2: EMC earthing and cabling requirements
� IEC 1000–5–1: EMC general considerations

It may be possible for you to obtain this information locally; however, the official
source of applicable Directives and related standards is:

The Office for Official Publications of the European Communities
L–2985 Luxembourg; quickest contact is via the World Wide Web at
www.euro–op.eu.int

Another source is:
Global Engineering Documents
www.global.ihs.com

Basic EMC Installation Guidelines
The following diagram illustrates good engineering practices supporting the
requirements of the Machinery and Low Voltage Directives. House all control
equipment in an industry standard lockable steel enclosure and use metallic conduit
for wire runs and cables.

�

Mains fused

isolation transformer

*Mains filter

Mains

disconnect switch

*Ferrite choke

on I/O wiring

I/O common

earthed

Earth

ground

*Ferrite choke on

communications cables

Metallic conduit for

communications

and I/O wiring

Communications

keyed lockout

switch

Star Washers

PanelGround Braid
Copper Lugs

Panel or
Single Point

Ground

*may be required for CE compliance
(see Declaration of Conformity for
specific product requirements).

Star Washers

Illustrations are not to scaleLock Nut

Lock Nut

Transient voltage

suppressor

Enclosures

A
ppendix F

E
U

 D
irectives

F–5
European Union Directives

DL205 User Manual, 3rd Ed. 06/02

We specify in all declarations of conformity that our products are installed inside an
industrial enclosure using metallic conduit for external wire runs; therefore, we test
the products in a typical enclosure. However, we would like to point out that although
our products operate normally in the presence of ESD, this is only the case when
mounted within an enclosed industrial control cabinet. When the cabinet is open
during installation or maintenance, the equipment and or programs may be at risk of
damage from ESD carried by personnel.
We therefore recommend that all personnel take necessary precautions to avoid the
risk of transferring static electricity to components inside the control cabinet. If
necessary, clear warnings and instructions should be provided on the cabinet
exterior, such as recommending the use of earth straps or similar devices, or the
powering off of equipment inside the enclosure.

DL205 AC powered base power
supplies require extra mains
filtering to comply with the EMC
Directive on conducted RF
emissions. Applicable PLC
equipment has been tested with
filters from Schaffner, which
reduce emissions levels if the
filters are properly grounded
(earth ground). A filter with a
current rating suitable to supply
all PLC power supplies and AC
input modules should be
selected. We suggest the
FN2010 for DL205 sytems.

Earth
Terminal

Fused
Terminals

Filter

Transient
Suppressor

To AC
Input

Circuitry

Schaffner
FN2010

L N

NOTE: Very few mains filters can reduce problem emissions to negligible levels. In
some cases, filters may increase conducted emissions if not properly matched to the
problem emissions. The filters shown above are not the same as a “power filter”,
which is used to keep transients on the mains from entering the PLC power supply.

In order to comply with the fire risk requirements of the Low Voltage and Machinery
Directive electrical standards EN 61010–1, and EN 60204–1, by limiting the power
into “unlimited” mains circuits with power leads reversed, it is necessary to fuse both
AC and DC supply inputs. You should also install a transient voltage suppressor
across the power input connections of the PLC. Choose a suppressor such as a metal
oxide varistor, with a rating of 275VAC working voltage for 230V nominal supplies
(150VAC working voltage for 115V supplies) and high energy capacity (eg. 140
joules).
Transient suppressors must be protected by fuses and the capacity of the transient
suppressor must be greater than the blow characteristics of the fuses or circuit
breakers to avoid a fire risk. A recommended AC supply input arrangement for Koyo
PLCs is to use twin 3 amp TT fused terminals with fuse blown indication, such as
DINnectors DN–F10L terminals, or twin circuit breakers, wired to a Schaffner FN2010
filter or equivalent, with high energy transient suppressor soldered directly across the
output terminals of the filter. PLC system inputs should also be protected from voltage
impulses by deriving their power from the same fused, filtered, and surge-suppressed
supply.

Electrostatic
Discharge (ESD)

AC Mains Filters

Suppression and
Fusing

A
pp

en
di

x
F

E
U

 D
ire

ct
iv

es
F–6

European Union Directives

DL205 User Manual, 3rd Ed. 06/02

A heavy-duty star earth terminal block should be provided in every cubicle for the
connection of all earth ground straps, protective earth ground connections, mains
filter earth ground wires, and mechanical assembly earth ground connections. This
should be installed to comply with safety and EMC requirements, local standards, and
the requirements found in IEC 1000–5–2.The Machinery Directive also requires that
the common terminals of PLC input modules, and common supply side of loads driven
from PLC output modules should be connected to the protective earth ground
terminal.

Key Serial Communication Cable
Equi-potential Bond

Adequate site earth grounding must be provided for equipment containing modern
electronic circuitry. The use of isolated earth electrodes for electronic systems is
forbidden in some countries. Make sure you check any requirements for your
particular destination. IEC 1000–5–2 covers equi-potential bonding of earth grids
adequately, but special attention should be given to apparatus and control cubicles
that contain I/O devices, remote I/O racks, or have inter-system communications with
the primary PLC system enclosure. An equi-potential bond wire must be provided
alongside all serial communications cables, and to any separate items of the plant
which contain I/O devices connected to the PLC. The diagram shows an example
of four physical locations connected by a communications cable.

ÎÎÎÎ
ÎÎÎÎ

Screened
Cable

Equi-potential
Bond

Control Cubicle

To Earth
Block

Conductive
Adapter

Serial
I/O

Good quality 24 AWG minimum twisted-pair shielded cables, with overall foil and
braid shields are recommended for analog cabling and communications cabling
outside of the PLC enclosure.

Internal Enclosure
Grounding

Equi–potential
Grounding

Communications
and Shielded
Cables

A
ppendix F

E
U

 D
irectives

F–7
European Union Directives

DL205 User Manual, 3rd Ed. 06/02

To date it has been a common practice to only provide an earth ground for one end of
the cable shield in order to minimize the risk of noise caused by earth ground loop
currents between apparatus. The procedure of only grounding one end, which
primarily originated as a result of trying to reduce hum in audio systems, is no longer
applicable to the complex industrial environment. Shielded cables are also efficient
emitters of RF noise from the PLC system, and can interact in a parasitic manner in
networks and between multiple sources of interference.

The recommendation is to use shielded cables as electrostatic “pipes” between
apparatus and systems, and to run heavy gauge equi-potential bond wires
alongside all shielded cables. When a shielded cable runs through the metallic wall
of an enclosure or machine, it is recommended in IEC 1000–5–2 that the shield
should be connected over its full perimeter to the wall, preferably using a conducting
adapter, and not via a pigtail wire connection to an earth ground bolt. Shields must be
connected to every enclosure wall or machine cover that they pass through.

NOTE: Cables, whether shielded or not MUST be enclosed within earthed metal
conduit or other metallic trunking when outside the PLC enclosure.

 Providing an earth ground for both ends of the shield for analog circuits provides the
perfect electrical environment for the twisted pair cable as the loop consists of signal
and return, in a perfectly balanced circuit arrangement, with connection to the
common of the input circuitry made at the module terminals. RS232 cables are
handled in the same way.

RS422 twin twisted pair, and RS485 single twisted pair cables also require a 0V link,
which has often been provided in the past by the cable shield. It is now
recommended that you use triple twisted pair cabling for RS422 links, and twin
twisted pair cable for RS485 links. This is because the extra pair can be used as the
0V inter-system link. With loop DC power supplies earth grounded in both systems,
earth loops are created in this manner via the inter-system 0v link. The installation
guides encourage earth loops, which are maintained at a low impedance by using
heavy equi-potential bond wires. To account for non–European installations
using single-end earth grounds, and sites with far from ideal earth ground
characteristics, we recommend the addition of 100 ohm resistors at each 0V
link connection in network and communications cables.

RXD
Master

RXDTXD 0V
+ – + –

Slave n
TXD 0V

+ – + –

Last Slave
RXD TXD0V
+ – + –

Termination

100� 100�

Termination

100�

When you run cables between PLC items within an enclosure which also contains
susceptible electronic equipment from other manufacturers, remember that these cables
may be a source of RF emissions. There are ways to minimize this risk. Standard data
cables connecting PLCs and/or operator interfaces should be routed well away from other
equipment and their associated cabling. You can make special serial cables where the
cable shield is connected to the enclosure’s earth ground at both ends, the same way as
external cables are connected.

Analog and RS232
Cables

Multidrop Cables

Shielded Cables
within Enclosures

A
pp

en
di

x
F

E
U

 D
ire

ct
iv

es
F–8

European Union Directives

DL205 User Manual, 3rd Ed. 06/02

 For safety reasons, it is a specific requirement of the Machinery Directive that a keyswitch
must be provided that isolates any network input signal during maintenance, so that
remote commands cannot be received that could result in the operation of the machinery.
The FA–ISONET does not have a keyswitch! Use a keylock and switch on your enclosure
which when open removes power from the FA–ISONET. To avoid the introduction of
noise into the system, any keyswitch assembly should be housed in its own earth
grounded steel box and the integrity of the shielded cable must be maintained.
Again, for further information on EU directives we recommend that you get a copy of
our EU Installation Manual (DA–EU–M). Also, if you are connected to the World
Wide Web, you can check the EU Commision’s official site at:
http://eur–op.eu.int/

� This equipment must be properly installed while adhering to the
guidelines of the PLC installation manual DA–EU–M, and is suitable for
EN 61010–1 installation categories 1 or 2.

� The rating between all circuits in this product are rated as basic
insulation only, as appropriate for single fault conditions.

� The protection provided by the equipment may be impaired if the
equipment is used in a manner not specified by the manufacturer.

� It is the responsibility of the system designer to earth one side of all
control and power circuits, and to earth the braid of screened cables.

� Input power cables must be externally fused and have an externally
mounted switch or circuit breaker, preferably mounted near the PLC.
Note: The DL205 internal base power supply has a 2A@250V slow blow
fuse; however, it is not replaceable, so external fusing is required.

� When needed, carefully clean the outside plastic case of PLC
components using a dry cloth.

� For hardware maintenance instructions, see the Maintenance and
Troubleshooting section in this manual. This section also includes
battery replacement information. Also, only replacement parts supplied
by our agents should be used.

� Cables, whether shielded or not MUST be enclosed within earthed
metal conduit or other metallic trunking when outside the PLC
enclosure.

� This is a Class A product and it may cause radio interference in certain
environments. The user may need to provide shielding, or other
measures to eliminate the interference.

Network Isolation

Items Specific to
the DL205

�

Index

A
Adding Numbers, 5–88

Alarms, PID, 8–54

ASCII Instructions, 5–211

ASCII Port Configuration 4–43

Auxiliary Functions, A–2
accessing

with DirectSOFT, A–3
with the Handheld, A–3

Accumulator Operations, 5–53

B
Bases

expansion bases, 4–11
installing modules, 2–9
mounting dimensions, 2–8
power wiring, 2–9
troubleshooting power problems, 9–11

Battery
CPU indicator, 9–2
replacement, 9–2

BCD to Binary Conversions, 5–130

Bias freeze, 8–38

Binary to BCD Conversions, 5–131

Bit Override, A–9

Bumpless transfer, 8–26

C
Cascade control, 8–52

Clock and Calendar, setting, A–6

Common terminals, 2–17

Communication
setting the network address, A–8

troubleshooting problems, 9–13

Comparative Boolean Instructions, 5–27–5–32

Configuration, I/O
automatic check, A–5
selecting a new configuration, A–5
viewing, A–5

Control Output, 8–30

Convergence Stages, 7–19, 7–25

Converting Number Formats
ASCII to Hex, 5–137
BCD to Binary, 5–130
Binary to BCD, 5–131
Binary to Real, 5–134
gray code, 5–141
Hex to ASCII, 5–138
inverting, 5–132
Real to Binary, 5–135
reordering digits (shuffle), 5–142
ten’s complement, 5–133

CPU
battery, 9–2
clearing memory, 3–15, A–4
features, 3–2
indicators, 9–10–9–13
modes of operation

editing during run mode, 9–24
test modes, 9–20–9–21

setup
clearing memory, 3–15
initializing system memory, 3–15
selecting retentive memory, A–9
setting the network address, A–8

Index–2

D
Date and Time, setting, A–6

Derivative term, 8–34

Diagnostics, 9–3
for I/O modules, 9–14

Dimensions, 2–8

Direct-acting loop, 8–34

DirectNET, 4–22

Disabling Outputs, 5–26 , 9–22, A–9

Discrete Memory, 3–35

Drum instructions, 6–14

Drum sequencers, 6–2

Drum step transitions, 6–4

Duplicate Reference Check, 9–19, A–4

E
EEPROM

checking the size, A–12
clearing, A–12
comparing Handheld and CPU, A–12
copying from the CPU, A–12
copying to the CPU, A–12
using AUX functions with, A–12

Electrical Noise, 9–17

Emergency Switch, 2–3

END Instruction, placement for troubleshooting, 9–22

Error Codes, 9–8
displaying the history, A–11
fatal, 9–3
I/O codes used in, 9–6
listing, B–2–B–9
non–fatal, 9–3
special relays assigned to, 9–5
V–memory locations for, 9–4
viewing message tables, 9–7
viewing the error log, 9–7

Error term, 8–31

European Directives, F–2

F
Fatal Errors, 9–3

Feed forward control, 8–48

Filter, 8–45

Forcing I/O, 9–26
with bit override, A–10

G
Gray Code, 5–141

Grounding, 2–4–2–5

H
Handheld Programmer, setup, A–12

I
I/O Modules

configuration, A–5
power up check, A–5
viewing, A–5

diagnostics, A–5
forcing points, with bit override, A–10
memory types, 3–36
troubleshooting, 9–14

Immediate Instructions, 5–33–5–40

Indicators, CPU, 9–10

Initial Stages, 7–5, 7–23

Input Modules
forcing input points, 9–26, A–10
updating with immediate instructions, 5–33

Installation
base

mounting dimensions, 2–8
wiring, 2–9

component dimensions, 2–8
grounding, 2–4–2–5
installing modules, 2–9
panel design specifications, 2–4

Instruction Set, index table, 5–2–5–4

Index–3

Instructions
accumulator, 5–53–5–87
ASCII, 5–211–5–226
bit, 5–123–5–129
boolean, 5–5–5–26
comparative boolean, 5–27–5–32
counters/timers, 5–41–5–52
execution times, C–2–C–23
immediate input/output, 5–32–5–36
math, 5–88–5–122
MODBUS network, 5–205–5–210
network, 5–193–5–196
number conversion, 5–130–5–143
stage, 7–23
stage programming, 7–2
table, 5–144–5–174
timers/counters, 5–41–5–52

Integral term, 8–35

J

Jump Instruction, 7–24

Jump instruction, 7–7

L

Local expansion I/O, 4–11

M

Masked drums, 6–20

Math Operations, 5–88–5–122

Memory
clearing, 3–15

program memory, A–4
V memory, A–4

EEPROM, operations, A–13
initializing system memory, 3–15, A–8
maps, 3–39–3–66
retentive selection, A–9

Messages, displaying the error tables, A–11
MODBUS, 4–22, 4–34

N
Network Address, A–8

Network connections, 4–22, 4–36
Network master operation, 4–30, 4–34
Network slave operation, 4–25
Noise Problems, troubleshooting, 9–17
Non–fatal Errors, 9–3

O
On/Off control, 8–50
One Shot, 5–20–5–23
Output Modules

disabling output points, 5–26
forcing output points, 9–26, A–10
holding output states, 9–21
power disconnect, 2–3
testing points, 9–16
updating with immediate instructions, 5–32

P
Part Numbering Scheme, 1–8
Passwords, A–14

PID Loops
Alarms, process, 8–54
algorithms, 8–32
basic operation, 8–20
bibliography, 8–64
cascade control, 8–52
data configuration, 8–27
features, 8–2
feed forward control, 8–48
On/Off control, 8–50
Ramp/Soak generator, 8–58
sample rate, 8–14
scheduling, 8–14
setup parameters, 8–6
terminology, 8–4, 8–65
troubleshooting tips, 8–63
tuning procedure, 8–39

PID loops, auto tuning, 8–38, 8–41
Pointers, 5–57
Position algorithm, 8–32
Power Indicator, 9–11
Process control, 8–18

Programming
assigning names, A–7

Index–4

changing I/O references, A–4
checking for duplicate references, 9–19, A–4
checking the program syntax, 9–18, A–4
clearing memory, A–4
editing during run mode, 9–24
error codes during, 9–9
holding output states, 9–21
immediate I/O update, 5–33
instruction execution times, C–2–C–23
instruction set index, 5–2
number conversions, 5–130
timers, 5–41

Proportional term, 8–35

R
Radian Conversions, 5–136
Ramp/soak generator, 8–58
Real numbers, 5–90, 5–93, 5–96, 5–99
Real Time Clock, setting, A–7
Relay output guidelines, 2–20
Remote I/O, 4–16
Retentive Memory, A–9
Reverse-acting loop, 8–34
RLLPLUS, instructions, 7–23–7–29
Run Time Edits, 9–24

S
Safety

emergency switch, 2–3
guidelines, 2–2–2–3
levels of protection, 2–2
output module power disconnect, 2–3
panel design specifications, 2–4
planning for, 2–2
sources of assistance, 2–2

Scan Time
displaying, A–7
watchdog timer, A–8

Seven Segment Display, instructions for, 5–114
Sinking / sourcing concepts, 2–16
Solid state I/O, 2–18
Special Relays, 9–5, D–2–D–8
Specifications

component weights, E–2
panel design, 2–4

Stack Operations, 5–53

Stage Counter instruction, 7–16

Stage programming, 7–2
convergence, 7–19
four steps to writing a stage program, 7–9
garage door opener example, 7–10
initial stages, 7–5
instructions, 7–23–7–29
introduction, 7–2
jump instruction, 7–7
managing large programs, 7–21
mutually exclusive transitions, 7–14
parallel processes, 7–12
parallel processing concepts, 7–19
power flow transition, 7–18
program organization, 7–15
questions and answers, 7–29
stage instruction characteristics, 7–6
stage view, 7–28
state transition diagrams, 7–3
supervisor process, 7–17
timer inside stage, 7–13
unconditional outputs, 7–18

Stages, blocks, 7–27

System
component dimensions, 2–8
memory initialization, 3–15, A–8
panel design specifications, 2–4

System design strategies, 4–2

Index–5

T
Table Instructions, 5–144

Test Modes, 9–20

Testing Output Points, 9–16

Time and Date, setting, A–6

Time-proportioning control, 8–50

Timed drum, 6–14

Timers, 5–41

Troubleshooting
cabinet air environment, 9–2
communications problems, 9–13
error codes, B–2

listing, 9–8–9–9
special relays for, 9–5
V memory locations for, 9–4

fatal errors, 9–3
finding diagnostic information, 9–3
forcing I/O points during, 9–26
holding output states, 9–21
I/O modules, 9–14, A–5

identification codes in errors, 9–6
selecting a new configuration, A–5

low battery, 9–2
noise problems, 9–17
non–fatal errors, 9–3
programming problems, 9–18–9–23
special instructions, 9–22
testing I/O points, 9–16
using CPU indicators, 9–10
using run time edits, 9–24
using test modes, 9–20
viewing error codes and messages, 9–7

V
V Memory, 3–39

Velocity algorithm, 8–33

W
Watchdog Timer, A–6

Wiring
base power supply, 2–9
common terminals, 2–17

Word Memory. See V Memory

www.soliton.com.br - e-mail: soliton@soliton.com.br
Informações sobre programação

Rua Alfredo Pujol, 1010 - Santana - São Paulo - SP.
SOLITON CONTROLES INDUSTRIAIS LTDA

Tel:11 - 6950-1834 / Fax: 11 - 6979-8980 - e-mail: vendas@soliton.com.br

